Modelling

Battery pack design for E-Scooter/Drone/EV applications

Battery pack design for an e-scooter, drone or EV is very interesting problem. With the new e-scooter boom in the market and pending EV boom in India, the need for battery pack design engineers is destined to grow. A battery pack design requires deeper understanding of the workings of a li-ion battery along with their dynamics in a group of batteries. This work consist of both simulation and experimental component.

 

 

Machine learning models for designing next-generation electrolytes for Li batteries

All solid-state batteries using lithium metal as anodes are currently being explored for high power and high energy density batteries. Traditional lithium ion batteries (LIBs) using liquid electrolytes pose significant issues, e.g., the organic electrolytes are flammable and undergo degradation. These issues can be overcome using solid electrolytes such as sulfide-based glassy and glass-ceramic solid electrolytes. Such materials have shown to possess very high ionic conductivities and excellent mechanical properties.

Design of robust optimal heat exchanger networks

Heat exchanger networks are designed with an aim of optimal performance at the design steady stage. This does not guarantee that in the presence of unanticipated (temperature, flow, UA) and planned (temperature, flow) disturbances, the designed network will still be optimal. To this end, this project aims at designing a network which will be robust enough to tackle these disturbances while maintaining optimality of operation. Continuous as well as batch heat exchanger networks will be targeted.

Simulating the Dynamics of Particulate Networks

Crude oil is a naturally occurring complex fluid with interesting flow characteristics. For example, crystallisation of high molecular weight hydrocarbons (waxes) occurs at low temperatures. When this happens, and if the particles are large enough in number, they deposit on the walls, slowly blocking the pipeline. This may sometimes also happen suddenly during shut-downs and if not managed properly, the pipeline may need to be abandoned. Prevention and management of blockage is thus a crucial problem for the petroleum industry. 

Design aspects of energy-integrated batch distillation

Distillation is one of the most commonly used as well as the most significant contributor of energy in chemical processing complex. Energy integration can improve the sustainability of the process by reducing utility requirement in batch distillation. However, operation of such columns is challenging. Traditionally, design of such systems is pursued without giving any consideration for operation. In the light of this, this project aims as developing a design framework for such distillation columns to address operational challenges.