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1 Introduction

The central problem of linear algebra is solution of linear equations of type

a11x1 + a12x2 + :::::::::::+ a1nxn = b1 (1)

a21x1 + a22x2 + :::::::::::+ a2nxn = b2 (2)

:::::::::::::::::::::::::::::::::: = :::: (3)

am1x1 + am2x2 + ::::::::::+ amnxn = bm (4)

which can be expressed in vector notation as follows

Ax = b (5)

A =

26664
a11 a12 ::: a1n

a21 a22 ::: a2n

::: ::: ::: :::

am1 ::: ::: amn

37775 (6)

where x 2 Rn;b 2 Rm and A2 Rm � Rn i.e. A is a m � n matrix. Here, m represents

number of equations while n represents number of unknowns. Three possible situations arise

while developing mathematical models

� Case (m > n) : system may have a unique solution / no solution / multiple solutions

depending on rank of matrix A and vector b:

� Case (m < n) : system either has no solution or has in�nite solutions.

Note that when there is no solution, it is possible to �nd projection of b in the column

space of A. This case was dealt with in the Lecture Notes on Problem Discretization by

Approximation Theory. In these lecture notes, we are interested in the case when m = n;

particularly when the number of equations are large. A took-kit to solve equations of this type

is at the heart of the numerical analysis. Before we present the numerical methods to solve

equation (5), we discuss the conditions under which the solutions exist. We then proceed

to develop direct and iterative methods for solving large scale problems. We later discuss

numerical conditioning of a matrix and its relation to errors that can arise in computing

numerical solutions.

2 Existence of Solutions

Consider the following system of equations"
1

2

2

�2

#"
x

y

#
=

"
2

1

#
(7)
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Figure 1: Linear algebraic equations: (a) Row viewpoint and (b) Column viewpoint

There are two ways of interpreting the above matrix vector equation geometrically.

� Row viewpoint [3]: If we consider two equations separately as

x+ 2y =
h
1 2

i " x
y

#
= 1 (8)

2x� 2y =
h
2 �2

i " x
y

#
= 1 (9)

then, each one is a line in x-y plane and solving this set of equations simultaneously

can be interpreted as �nding the point of their intersection (see Figure 1 (a)).

� Column viewpoint [3]: We can interpret the equation as linear combination of col-
umn vectors, i.e. as vector addition"

1

2

#
x +

"
2

�2

#
y =

"
2

1

#
(10)

Thus, the system of simultaneous equations can be looked upon as one vector equation

i.e. addition or linear combination of two vectors (see Figure 1 (b)).
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Now consider the following two linear equations

x+ y = 2 (11)

3x+ 3y = 4 (12)

This is clearly an inconsistent case and has no solution as the row vectors are linearly

dependent. In column picture, no scalar multiple of

v = [1 3]T

can found such that �v = [2 4]T : Thus, in a singular case

Row viewpoint fails () Column viewpoint fails

i.e. if two lines fail to meet in the row viewpoint then vector b cannot be expressed as linear

combination of column vectors in the column viewpoint [3].

Now, consider a general system of linear equations Ax = b where A is an n�n matrix.
Row viewpoint : Let A be represented as

A =

266664
�
r(1)
�T�

r(2)
�T

::::�
r(n)
�T

377775 (13)

where
�
r(i)
�T
represents i�th row of matrix A. Then Ax = b can be written as n equations266664

�
r(1)
�T
x�

r(2)
�T
x

::::�
r(n)
�T
x

377775 =
26664
b1

b2

::::

bn

37775 (14)

Each of these equations
�
r(i)
�T
x = bi represents a hyperplane in Rn (i.e. line in R2 ,plane

in R3 and so on). Solution of Ax = b is the point x at which all these hyperplanes

intersect (if at all they intersect in one point).

Column viewpoint : Let matrix A be represented as

A = [ c(1) c(2):::::::::c(n) ]

where c(i) represents ithcolumn of A. Then we can look at Ax = b as one vector equation

x1c
(1) + x2c

(2) + ::::::::::::::+ xnc
(n) = b (15)

5



Components of solution vector x tells us how to combine column vectors to obtain vector

b:In singular case, the n hyperplanes have no point in common or equivalently the n col-

umn vectors are not linearly independent. Thus, both these geometric interpretations are

consistent with each other.

Matrix A operates on vector x 2 R(AT ) (i.e. a vector belonging to row space of A) it

produces a vector Ax 2 R(A) (i.e. a vector in column space of A). Thus, given a vector b; a
solution x exists Ax = b if only if b 2 R(A): The solution is unique if the columns of A are

linearly independent and the null space of A contains only the origin, i.e. N (A) � f0g:A
non-zero null space is obtained only when columns ofA are linearly dependent and the matrix

A is not invertible. In such as case, we end up either with in�nite number of solutions when

b 2 R(A) or with no solution when b =2 R(A):

3 Direct Solution Techniques

Methods for solving linear algebraic equations can be categorized as direct and iterative

schemes. There are several methods which directly solve equation (5). Prominent among

these are such as Cramer�s rule, Gaussian elimination and QR factorization. As indicated

later, the Cramer�s rule is unsuitable for computer implementation and is not discussed here.

Among the direct methods, we only present the Gaussian elimination here in detail.

3.1 Gaussian Elimination and LU Decomposition

The Gaussian elimination is arguably the most used method for solving a set of linear

algebraic equations. It makes use of the fact that a solution of a special system of linear

equations, namely the systems involving triangular matrices, can be constructed very easily.

For example, consider a system of linear equation given by the following matrix equation

U =

26666664
u11 u12 u13 ::: u1n

0 u22 u23 ::: u2n

0 0 u33 ::: u3n

0 ::: :::: ::: :::

0 ::: : 0 u nn

37777775 (16)

Here, U is a upper triangular matrix such that all elements below the main diagonal are

zero and all the diagonal elements are non-zero, i.e. uii 6= 0 for all i. To solve the system
Ux =�, one can start from the last equation

xn =
�n
unn

(17)
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and then proceed as follows

xn�1 =
1

un�1;n�1

�
�n�1 � un�1;nxn

�
xn�2 =

1

un�2;n�2

�
�n�2 � un�2;n�1xn�1 � un�2;nxn

�
In general, for i�th element xi; we can write

xi =
1

uii

"
�i �

nX
j=i+1

uijxj

#
(18)

where i = n � 1; n � 2; :::1: Since we proceed from i = n to i = 1; these set of calculations

are referred to as back substitution.

Thus, the solution procedure for solving this system of equations involving a special type

of upper triangular matrix is particularly simple. However, the trouble is that most of the

problems encountered in real applications do not have such special form. Now, suppose

we want to solve a system of equations Ax = b where A is a general full rank square

matrix without any special form. Then, by some series of transformations, can we convert

the system from Ax = b form to Ux =� form, i.e. to the desired special form? It is

important to carry out this transformation such that the original system of equations and

the transformed system of equations have identical solutions, x.

To begin with, let us note one important property of the system of linear algebraic

equations under consideration. Let T represent an arbitrary square matrix with full rank,

i.e. T is invertible. Then, the system of equations Ax = b and (TA)x = Tb have identical

solutions. This follows from invertibility of matrix T: Thus, if we can �nd a matrix T such

that TA = U; where U is of the form (16) and uii 6= 0 for all i, then recovering the solution
x from the transformed system of equations is quite straight forward. Let us see how to

construct such a transformation matrix systematically.

Thus, the task at hand is to convert a general matrix A to the upper triangular form

U:To understand the process of conversion, let is consider a speci�c example where (A;b)

are chosen as follows

A =

264 2 1 �1
4 1 2

�2 2 1

375 and b =

264 27
1

375 (19)

To begin with, we would like to transform A to matrix

A(1) =

264 2 1 �1
0 � �
�2 2 1

375
7



such that element (2,1) of A(1) is zero. This can be achieved by constructing an elementary

matrix, E21; as follows

E21 =

264 1 0 0

�e21 1 0

0 0 1

375 =
264 1 0 0

�2 1 0

0 0 1

375
where

e21 =
a21
a11

= 2

Here, the element a11 is called as pivot, or, to be precise, the �rst pivot. Note that E21 is an

invertible matrix and its inverse can be constructed as follows

(E21)
�1 =

264 1 0 0

e21 1 0

0 0 1

375
Multiplying matrix A and vector b with E21 yields

A(1) = E21A =

264 2 1 �1
0 �1 4

�2 2 1

375 and b(1)= E21b =

264 23
1

375
and since the transformation matrix T = E21 is invertible, the transformed system of equa-

tions (E21A)x = (E21b) and the original system Ax = b will have identical solutions.

While the above transformation was achieved by multiplying both the sides of Ax = b by

T = E21; identical result can be achieved in practice if we multiply the �rst row of the matrix

augmented matrix
h
A j b

i
by �e21 add it to its second row, i.e.

a
(1)
2j = a2j � e21a1j

for j = 1; 2; :::n and b(1)2 = b2�e21b1: This turns out to be much more e¢ cient way of carrying
out the transformation than doing the matrix multiplications.

Next step is to transform A(1) to

A(2) =

264 2 1 �1
0 �1 4

0 � �

375
and this can be achieved by constructing

E31 =

264 1 0 0

0 1 0

�e31 0 1

375 =
2664
1 0 0

0 1 0

�a31
a11

0 1

3775 =
264 1 0 0

0 1 0

1 0 1

375
8



and multiplying matrix A(1) and vector b(1) with E31 i.e.

A(2) = E31A
(1) = (E31E21)A =

264 2 1 �1
0 �1 4

0 3 0

375
b(2) = E31b

(1) = (E31E21)b =

264 23
3

375
Note again that E31 is invertible and

(E31)
�1 =

264 1 0 0

0 1 0

e31 0 1

375 =
264 1 0 0

0 1 0

�1 0 1

375
Thus, to begin with, we make all the elements in the �rst column zero, except the �rst one.

To get an upper triangular form, we now have to eliminate element (3,2) of A(2) and this

can be achieved by constructing another elementary matrix

E32 =

264 1 0 0

0 1 0

0 �e32 1

375 =
26664
1 0 0

0 1 0

0 �a
(2)
32

a
(2)
22

1

37775 =
264 1 0 0

0 1 0

0 3 1

375
Transforming A(2) we obtain

U = A(3) = E32A
(2) = (E32E31E21)A =

264 2 1 �1
0 �1 4

0 0 12

375
� = b(3)=E31b

(1) = (E32E31E21)b =

264 23
12

375
Note that matrix A(3) is exactly the upper triangular form U that we have been looking for.
The invertible transformation matrix T that achieves this is given by

T = E32E31E21 =

264 1 0 0

�2 1 0

�5 3 1

375
which is a lower triangular matrix. Once we have transformed Ax = b to Ux =� form, it

is straight forward to compute the solution

x3 = 1; x2 = 1 and x1 = 1

9



using the back substitution method.

It is interesting to note that

T�1 = E�121 E
�1
31 E

�1
32 =

264 1 0 0

2 1 0

�1 �3 1

375 =
264 1 0 0

2 1 0

�1 �3 1

375 =
264 1 0 0

e21 1 0

e31 e32 1

375
i.e. the inverse of matrix T can be constructed simply by inserting eij at (i,j)�th position in

an identity matrix. Since we have U = TA, matrix A can be recovered from U by inverting

the transformation process as A = T�1 U. Here, T�1 is a lower triangular matrix and it is

customary to denote it using symbol L i.e. L � T�1 and A = L U. This is nothing but the

LU decomposition of matrix A.

Before we proceed with generalization of the above example, it is necessary to examine a

degenerate situation that can arise in the process of Gaussian elimination. In the course of

transformation, we may end up with a scenario where the a zero appears in one of the pivot

locations. For example, consider the system of equations with slightly modi�ed A matrix

and b vector i.e.

A =

264 2 1 �1
4 2 2

�2 2 1

375 and b =

264 28
1

375 (20)

Multiplying with

E21 =

264 1 0 0

�2 1 0

0 0 1

375 and E31 =

264 1 0 0

0 1 0

1 0 1

375
yields

A(2) = E31E21A =

264 2 1 �1
0 0 4

0 3 0

375 and b(2)= E31E21b =

264 24
3

375
Note that zero appears in the pivot element, i.e. a(2)22 = 0; and consequently the construction

of E32 is in trouble. This di¢ culty can be alleviated if we exchange the last two rows of

matrix A(2) and last two elements of b(2), i.e.

A(3) =

264 2 1 �1
0 3 0

0 0 4

375 and b(3)=

264 23
4

375
This rearrangement renders the pivot element a(3)22 6= 0 and the solution becomes tractable.
The transformation leading to exchange of rows can be achieved by constructing a permuta-
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tion matrix P32

P32 =

264 1 0 0

0 0 1

0 1 0

375
such that P32A(2) = A(3): The permutation matrix P32 is obtained just by exchanging rows 2

and 3 of the identity matrix. Note that the permutation matrices have strange characteristics.

Not only these matrices are invertible, but these matrices are inverses of themselves! Thus,

we have

(P32)
2 =

264 1 0 0

0 0 1

0 1 0

375
264 1 0 0

0 0 1

0 1 0

375 =
264 1 0 0

0 1 0

0 0 1

375
which implies (P32)

�1 = P32 and, if you consider the fact that exchanging two rows of a

matrix in succession will bring back the original matrix, then this result is obvious. Coming

back to the construction of the transformation matrix for the linear system of equations

under consideration, matrix T is now constructed as follows T = P32E31E21:

This approach of constructing the transformation matrix T; demonstrated using a 3� 3
matrix A; can be easily generalized for a system of equations involving an n� n matrix A.
For example, elementary matrix Ei1; which reduces element (i; 1) in matrix A to zero, can

be constructed by simply inserting �ei1 = �(ai1=a11) at (i; 1)0th location in an n�n identity
matrix, i.e.

Ej1 =

26666664
1 0 0 ::: 0

::: ::: ::: ::: :::

�ei1 ::: 1 ::: 0

0 ::: :::: ::: :::

0 ::: :::: 0 1

37777775 (21)

while the permutation matrix Pij; which interchanges i�th and j�th rows, can be created by

interchanging i�th and j�th rows of the n � n identity matrix. The transformation matrix
T for a general n � n matrix A can then be constructed by multiplying the elementary

matrices, Eij; and the permutation matrices, Pij; in appropriate order such that TA = U:

It is important to note that the explanation presented in this subsection provides insights

into the internal working of the Gaussian elimination process. While performing the Gaussian

elimination on a particular matrix through a computer program, neither matrices (Eij;Pij)

nor matrix T is constructed explicitly. For example, reducing elements (i; 1) in the �rst

column of matrix A to zero is achieved by performing the following set of computations

a
(i)
ij = aij � ei1a1j for j = 1; 2; :::n

11



where i = 1; 2; :::n: Performing these elimination calculations, which are carried out row

wise and may require row exchanges, is equivalent to constructing matrices (Eij;Pij) and

e¤ectively matrix T; which is an invertible matrix. Once we have reduced Ax = b to

Ux =� form, such that uii 6= 0 for all i, then it is easy to recover the solution x using

the back substitution method. Invertibility of matrix T guarantees that the solution of the

transformed problem is identical to that of the original problem.

3.2 Number Computations in Direct Methods

Let ' denote the number of divisions and multiplications required for generating solution

by a particular method. Various direct methods can be compared on the basis of '.

� Cramers Rule:

'(estimated) = (n� 1)(n+ 1)(n!) + n �= n2 � n! (22)

For a problem of size n = 100 we have ' �= 10162 and the time estimate for solving

this problem on DEC1090 is approximately 10149years [1].

� Gaussian Elimination and Backward Sweep: By maximal pivoting and row

operations, we �rst reduce the system (5) to

Ux = bb (23)

where U is a upper triangular matrix and then use backward sweep to solve (23) for

x:For this scheme, we have

' =
n3 + 3n2 � n

3
�=
n3

3
(24)

For n = 100we have ' �= 3:3 � 105 [1].

� LU-Decomposition: LU decomposition is used when equation (5) is to be solved for
several di¤erent values of vector b, i.e.,

Ax(k) = b(k) ; k = 1; 2; ::::::N (25)

The sequence of computations is as follows

A = LU (Solved only once) (26)

Ly(k) = b(k) ; k = 1; 2; ::::::N (27)

Ux(k) = y(k) ; k = 1; 2; ::::::N (28)

12



For N di¤erent b vectors,

' =
n3 � n
3

+Nn2 (29)

� Gauss_Jordon Elimination: In this case, we start with [A : I : b] and by sequence

row operations we reduce it to [I : A�1 : x] i.e.

�
A : I : b(k)

� Sequence of

!
RowOperations

�
I : A�1 : x(k)

�
(30)

For this scheme, we have

' =
n3 + (N � 1)n2

2
(31)

Thus, Cramer�s rule is certainly not suitable for numerical computations. The later three

methods require signi�cantly smaller number of multiplication and division operations when

compared to Cramer�s rule and are best suited for computing numerical solutions moderately

large (n � 1000) systems. When number of equations is signi�cantly large (n � 10000), even
the Gaussian elimination and related methods can turn out to be computationally expensive

and we have to look for alternative schemes that can solve (5) in smaller number of steps.

When matrices have some simple structure (few non-zero elements and large number of
zero elements), direct methods tailored to exploit sparsity and perform e¢ cient numerical

computations. Also, iterative methods give some hope as an approximate solution x can be

calculated quickly using these techniques.

4 Direct Methods for Solving Sparse Linear Systems

A system of Linear equations

Ax = b (32)

is called sparse if only a relatively small number of its matrix elements (aij) are nonzero.

The sparse patterns that frequently occur are

� Tridiagonal

� Band diagonal with band width M

� Block diagonal matrices

� Lower / upper triangular and block lower / upper triangular matrices

13



We have encountered numerous situations in the module on Problem Discretization using

Approximation Theory where such matrices arise. It is wasteful to apply general direct meth-

ods on these problems. Special methods are evolved for solving such sparse systems, which

can achieve considerable reduction in the computation time and memory space requirements.

In this section, some of the sparse matrix algorithms are discussed in detail. This is meant

to be only a brief introduction to sparse matrix computations and the treatment of the topic

is, by no means, exhaustive.

4.1 Block Diagonal Matrices

In some applications, such as solving ODE-BVP / PDE using orthogonal collocations on

�nite elements, we encounter equations with a block diagonal matrices, i.e.26664
A1 [0] :::: [0]

[0] A2 :::: [0]

::::: : :::: :::::

[0] [0] :::: Am

37775
26664
x(1)

x(2)

::::

x(m)

37775 =
26664
b(1)

b(2)

::::

b(m)

37775
where Ai for i = 1; 2; ::m are ni � ni sub-matrices and x(i) 2 Rni, b(i) 2 Rni for i = 1; 2; ::m
are sub-vectors. Such a system of equations can be solved by solving the following sub-

problems

Aix
(i) = b(i) for i = 1; 2; :::m (33)

where each equation is solved using, say, Gaussian elimination. Each Gaussian elimination

sub-problem would require

'i =
n3i + 3n

2
i � ni
3

and

'(Block Diagonal) =
mX
i=1

'i

De�ning dimension of vector x as n =
Pm

i=1 ni; the number of multiplications and divisions

in the conventional Gaussian elimination equals

'(Conventional) =
n3 + 3n2 � n

3

It can be easily shown that
mX
i=1

n3i + 3n
2
i � ni
3

<<
(
Pm

i=1 ni)
3
+ 3 (

Pm
i=1 ni)

2 �
Pm

i=1 ni
3

i.e.

'(Block Diagonal) << '(Conventional)

14



4.2 Thomas Algorithm for Tridiagonal and Block Tridiagonal Ma-
trices [2]

Consider system of equation given by following equation266666666666664

b1 c1 0 ::: ::: ::: ::: 0

a2 b2 c2 0 ::: ::: ::: 0

0 a3 b3 c3 ::: ::: ::: 0

0 0 a4 b4 c4: ::: ::: :::

::: ::: :: ::: ::: ::: ::: :::

::: ::: ::: ::: ::: ::: cn�2 0

::: ::: ::: ::: ::: an�1 bn�1 cn�1

0 0 0 0 ::: :0 an bn

377777777777775

266666666666664

x1

x2

x3

::::

::::

::::

::::

xn

377777777777775
=

266666666666664

d1

d2

::::

::::

::::

::::

::::

dn

377777777777775
(34)

where matrix A is a tridiagonal matrix. Thomas algorithm is the Gaussian elimination

algorithm tailored to solve this type of sparse system.

� Step 1:Triangularization: Forward sweep with normalization

1 =
c1
b1

(35)

k =
ck

bk � akk�1
for k = 2; 3; ::::(n� 1) (36)

�1 = d1=b1 (37)

�k =
(dk � ak�k�1)
(bk � akk�1)

for k = 2; 3; ::::n (38)

This sequence of operations �nally results in the following system of equations26666664
1 1 0 :::: 0

0 1 2 :::: 0

::: 0 1 :::: :

:::: :::: :::: :::: n�1
0 0 ::: :::: 1

37777775

26666664
x1

x2

::::

::::

xn

37777775 =
26666664
�1
�2
:

:

�n

37777775
� Step 2: Backward sweep leads to solution vector

xn = �n

xk = �k � kxk+1 (39)

k = (n� 1); (n� 2); ::::::; 1 (40)
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Total no of multiplications and divisions in Thomas algorithm is

' = 5n� 8

which is signi�cantly smaller than the n3=3 operations (approximately) necessary for

carrying out the Gaussian elimination and backward sweep for a dense matrix.

The Thomas algorithm can be easily extended to solve a system of equations that involves

a block tridiagonal matrix. Consider block tridiagonal system of the form26666664
B1 C1 [0]: ::::: :::: [0]:

A2 B2 C2 :::: ::::: :::::

:::: ::::: ::::: ::::: ::::: [0]:

::::: ::::: ::::: ::::: :Bn�1 Cn�1

[0] ::::: ::::: [0] An Bn

37777775

26666664
x(1)

x(2)

:

:

x(n)

37777775 =
26666664
d(1)

d(2)

:

:

d(n)

37777775 (41)

where Ai; Bi and Ci are matrices and (x(i), d(i)) represent vectors of appropriate dimen-

sions.

� Step 1:Block Triangularization

�1 = [B1]
�1C1

�k = [Bk �Ak�k�1]
�1Ck for k = 2; 3; ::::(n� 1) (42)

�(1) = [B1]
�1 d(1) (43)

�(k) = [Bk �Ak�k�1]
�1 (d(k) �Ak�

(k�1)) for k = 2; 3; ::::n

� Step 2: Backward sweep

x(n) = �(n) (44)

x(k) = �(k) � �kx(k+1) (45)

for k = (n� 1); (n� 2); ::::::; 1 (46)

16



4.3 Triangular and Block Triangular Matrices

A triangular matrix is a sparse matrix with zero-valued elements above or below the diagonal.

For example, a lower triangular matrix can be represented as follows

L =

26666664
l11 0 : : 0

l12 l22 : : 0

: : : : :

: : : : :

l n1 : : : l nn

37777775
To solve a system Lx = b, the following algorithm is used

x1 =
b1
l11

(47)

xi =
1

lii

"
bi �

i�1X
j=1

lijxj

#
for i = 2; 3; :::::n (48)

The operational count ' i.e., the number of multiplications and divisions, for this elimination

process is

' =
n(n+ 1)

2
(49)

which is considerably smaller than the Gaussian elimination for a dense matrix.

In some applications we encounter equations with a block triangular matrices. For ex-

ample, 26664
A1;1 [0] :::: [0]

A1;2 A2;2 :::: [0]

::::: : :::: :::::

Am;1 Am;2 :::: Am;m

37775
26664
x(1)

x(2)

::::

x(m)

37775 =
26664
b(1)

b(2)

::::

b(m)

37775
where Ai;j are ni � ni sub-matrices while x(i) 2 Rni and b(i) 2 Rni are sub-vectors for
i = 1; 2; ::m. The solution of this type of systems is completely analogous to that of lower

triangular systems,except that sub-matrices and sub-vectors are used in place of scalars.

Thus, the equivalent algorithm for block-triangular matrix can be stated as follows

�(1) = (A11)
�1b(1) (50)

x(i) = (Aii)
�1[b(i) �

i�1X
j=1

(Aijx
(i))] for i = 2; 3; :::::m (51)

The above form does not imply that the inverse (Aii)
�1should be computed explicitly. For

example, we can �nd each x(i) by Gaussian elimination.
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4.4 Solution of a Large System By Partitioning

If matrix A is equation (5) is very large, then we can partition matrix A and vector b as

Ax =

"
A11 A12

A21 A22

#"
x(1)

x(2)

#
=

"
b(1)

b(2)

#
where A11 is a (m�m) square matrix. this results in two equations

A11x
(1) +A12x

(2) = b(1) (52)

A21x
(1) +A22 x

(2) = b(2) (53)

which can be solved sequentially as follows

x(1) = [A11]
�1 [b(1) �A12x

(2)] (54)

A21 [A11]
�1 [b(1) �A12x

(2)] +A22x
(2) = b(2) (55)�

A22 �A21 [A11]
�1A12

�
x(2) = b(2) � (A21A

�1
11 )b

(1) (56)

x(2) =
�
A22 �A21 [A11]

�1A12

��1 �
b(2) � (A21A

�1
11 )b

(1)
�

It is also possible to work with higher number of partitions equal to say 9, 16 .... and solve

a given large dimensional problem.

5 Iterative Solution Techniques

By this approach, we start with some initial guess solution, say x(0); for solution x and

generate an improved solution estimate x(k+1) from the previous approximation x(k): This

method is a very e¤ective for solving di¤erential equations, integral equations and related

problems [4]. Let the residue vector r be de�ned as

r
(k)
i = bi �

nX
j=1

aijx
(k)
j for i = 1; 2; :::n (57)

i.e. r(k) = b � Ax(k): The iteration sequence
�
x(k) : k = 0; 1; :::

	
is terminated when some

norm of the residue
r(k) = Ax(k) � b becomes su¢ ciently small, i.e.r(k)

kbk < " (58)
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where " is an arbitrarily small number (such as 10�8 or 10�10). Another possible termination

criterion can be x(k) � x(k+1)
kx(k+1)k < " (59)

It may be noted that the later condition is practically equivalent to the previous termination

condition.

A simple way to form an iterative scheme is Richardson iterations [4]

x(k+1) = (I�A)x(k) + b (60)

or Richardson iterations preconditioned with approximate inversion

x(k+1) = (I�MA)x(k) +Mb (61)

where matrix M is called approximate inverse of A if kI�MAk < 1: A question that

naturally arises is �will the iterations converge to the solution of Ax = b?�. In this section,

to begin with, some well known iterative schemes are presented. Their convergence analysis

is presented next. In the derivations that follow, it is implicitly assumed that the diagonal

elements of matrix A are non-zero, i.e. aii 6= 0: If this is not the case, simple row exchange
is often su¢ cient to satisfy this condition.

5.1 Iterative Algorithms

5.1.1 Jacobi-Method

Suppose we have a guess solution, say x(k);

x(k) =
h
x
(k)
1 x

(k)
2 :::: x

(k)
n

iT
for Ax = b: To generate an improved estimate starting from x(k);consider the �rst equation

in the set of equations Ax = b, i.e.,

a11x1 + a12x2 + :::::::::+ a1nxn = b1 (62)

Rearranging this equation, we can arrive at a iterative formula for computing x(k+1)1 , as

x
(k+1)
1 =

1

a11

h
b1 � a12x(k)2 :::::::� a1nx(k)n

i
(63)

Similarly, using second equation from Ax = b, we can derive

x
(k+1)
2 =

1

a22

h
b2 � a21x(k)1 � a23x(k)3 ::::::::� a2nx(k)n

i
(64)
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Table 1: Algorithm for Jacobi Iterations
INITIALIZE :b;A;x(0); kmax; "

k = 0

� = 100 � "
WHILE [(� > ") AND (k < kmax)]

FOR i = 1 : n

ri = bi �
nP
j=1

aijxj

xNi = xi +

�
ri
aii

�
END FOR

� =
krk
kbk

� = xN
k = k + 1

END WHILE

In general, using ithrow of Ax = b; we can generate improved guess for the i�th element x

of as follows

x
(k+1)
i =

1

aii

h
b2 � ai1x(k)1 ::::::� ai;i�1x

(k)
i�1 � ai;i+1x

(k)
i+1:::::� ai;nx(k)n

i
(65)

The above equation can also be rearranged as follows

x
(k+1)
i = x

(k)
i +

 
r
(k)
i

aii

!

where r(k)i is de�ned by equation (57). The algorithm for implementing the Jacobi iteration

scheme is summarized in Table 1.

5.1.2 Gauss-Seidel Method

When matrix A is large, there is a practical di¢ culty with the Jacobi method. It is re-

quired to store all components of x(k) in the computer memory (as a separate variables) until

calculations of x(k+1) is over. The Gauss-Seidel method overcomes this di¢ culty by using

x
(k+1)
i immediately in the next equation while computing x(k+1)i+1 :This modi�cation leads to

the following set of equations

x
(k+1)
1 =

1

a11

h
b1 � a12x(k)2 � a13x(k)3 ::::::a1nx(k)n

i
(66)
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Table 2: Algorithm for Gauss-Seidel Iterations
INITIALIZE :b;A;x; kmax; "

k = 0

� = 100 � "
WHILE [(� > ") AND (k < kmax)]

FOR i = 1 : n

ri = bi �
nP
j=1

aijxj

xi = xi + (ri=aii)

END FOR

� = krk = kbk
k = k + 1

END WHILE

x
(k+1)
2 =

1

a22

h
b2 �

n
a21x

(k+1)
1

o
�
n
a23x

(k)
3 + :::::+ a2nx

(k)
n

oi
(67)

x
(k+1)
3 =

1

a33

h
b3 �

n
a31x

(k+1)
1 + a32x

(k+1)
2

o
�
n
a34x

(k)
4 + :::::+ a3nx

(k)
n

oi
(68)

In general, for i�th element of x, we have

x
(k+1)
i =

�
1

aii

�"
bi �

i�1X
j=1

aijx
(k+1)
j �

nX
j=i+1

aijx
(k)
j

#

To simplify programming, the above equation can be rearranged as follows

x
(k+1)
i = x

(k)
i +

�
r
(k)
i =aii

�
(69)

where

r
(k)
i =

"
bi �

i�1X
j=1

aijx
(k+1)
j �

nX
j=i

aijx
(k)
j

#
The algorithm for implementing Gauss-Siedel iteration scheme is summarized in Table 2.

5.1.3 Relaxation Method

Suppose we have a starting value say y, of a quantity and we wish to approach a target

value, say y�; by some method. Let application of the method change the value from y to by.
If by is between y and ey; which is even closer to y� than by, then we can approach y� faster by
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Table 3: Algorithms for Over-Relaxation Iterations
INITIALIZE :b;A;x; kmax; "; !

k = 0

� = 100 � "
WHILE [(� > ") AND (k < kmax)]

FOR i = 1 : n

ri = bi �
nP
j=1

aijxj

zi = xi + (ri=aii)

xi = xi + !(zi � xi)
END FOR

r = b�Ax
� = krk = kbk
k = k + 1

END WHILE

magnifying the change (by � y) [3]. In order to achieve this, we need to apply a magnifying
factor ! > 1 and get ey = y + ! (by � y) (70)

This ampli�cation process is an extrapolation and is an example of over-relaxation. If the
intermediate value by tends to overshoot target y�, then we may have to use ! < 1 ; this is
called under-relaxation.
Application of over-relaxation to Gauss-Seidel method leads to the following set of

equations

x
(k+1)
i = x

(k)
i + ![z

(k+1)
i � x(k)i ] (71)

i = 1; 2; :::::n

where z(k+1)i are generated using the Gauss-Seidel method, i.e.,

z
(k+1)
i =

�
1

aii

�"
bi �

i�1X
j=1

aijx
(k+1)
j �

nX
j=i+1

aijx
(k)
j

#
(72)

i = 1; 2; :::::n

The steps in the implementation of the over-relaxation iteration scheme are summarized in

Table 3. It may be noted that ! is a tuning parameter, which is chosen such that 1 < ! < 2:
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5.2 Convergence Analysis of Iterative Methods [3, 2]

5.2.1 Vector-Matrix Representation

When Ax = b is to be solved iteratively, a question that naturally arises is �under what

conditions the iterations converge?�. The convergence analysis can be carried out if the

above set of iterative equations are expressed in the vector-matrix notation. For example,

the iterative equations in the Gauss-Siedel method can be arranged as follows26664
a11 0 :: 0

a21 a22 0 :

::: ::: ::: 0

an1 an2 ::: ann

37775
26664
x
(k+1)
1

:::

:::

x
(k+1)
n

37775 =
26664
0 �a12 �a13 ::: �a1;n
0 0 �a23 ::: �a2;n
: : : :: �an�1;n
0 : : : 0

37775
26664
x
(k)
1

:

:

x
(k)
n

37775+
26664
b1

:

:

bn

37775
(73)

Let D;L and U be diagonal, strictly lower triangular and strictly upper triangular parts of

A, i.e.,

A = L+D+U (74)

(The representation given by equation 74 should NOT be confused with matrix factorization

A = LDU). Using these matrices, the Gauss-Siedel iteration can be expressed as follows

(L+D)x(k+1) = �Ux(k) + b (75)

or

x(k+1) = � (L+D)�1Ux(k) + (L+D)�1b (76)

Similarly, rearranging the iterative equations for Jacobi method, we arrive at

x(k+1) = �D�1(L+U)x(k) +D�1b (77)

and for the relaxation method we get

x(k+1) = (D+ !L)�1[(1� !)D� !U]x(k) + ! b (78)

Thus, in general, an iterative method can be developed by splitting matrix A. If A is

expressed as

A = S�T (79)

then, equation Ax = b can be expressed as

Sx = Tx+ b

Starting from a guess solution

x(0) = [x
(0)
1 ::::::::x

(0)
n ]

T (80)
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we generate a sequence of approximate solutions as follows

x(k+1) = S�1[Tx(k) + b] where k = 0; 1; 2; ::::: (81)

Requirements on S and T matrices are as follows [3] : matrix A should be decomposed into

A = S�T such that

� Matrix S should be easily invertible

� Sequence
�
x(k) : k = 0; 1; 2; ::::

	
should converge to x�where x� is the solution ofAx =

b.

The popular iterative formulations correspond to the following choices of matrices S and

T[3, 4]

� Jacobi Method:
SJAC = D; TJAC = �(L+U) (82)

� Forward Gauss-Seidel Method

SGS = L+D; TGS = �U (83)

� Relaxation Method:

SSOR = !L+D; TSOR = (1� !)D� !U (84)

� Backward Gauss Seidel: In this case, iteration begins the update of x with n�th
coordinate rather than the �rst. This results in the following splitting of matrix A [4]

SBSG = U+D; TBSG = �L (85)

In Symmetric Gauss Seidel approach, a forward Gauss-Seidel iteration is followed by
a backward Gauss-Seidel iteration.

5.2.2 Iterative Scheme as a Linear Di¤erence Equation

In order to solve equation (5), we have formulated an iterative scheme

x(k+1) =
�
S�1T

�
x(k) + S�1b (86)

Let the true solution equation (5) be

x� =
�
S�1T

�
x� + S�1b (87)
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De�ning error vector

e(k) = x(k) � x� (88)

and subtracting equation (87) from equation (86), we get

e(k+1) =
�
S�1T

�
e(k) (89)

Thus, if we start with some e(0); then after k iterations we have

e(1) =
�
S�1T

�
e(0) (90)

e(2) =
�
S�2T2

�
e(1) = [S�1T]2e(0) (91)

:::: = :::::::::: (92)

e(k) = [S�1T]ke(0) (93)

The convergence of the iterative scheme is assured if

lim

k !1
e(k) = 0 (94)

i.e.
lim

k !1
[S�1T]ke(0) = 0 (95)

for any initial guess vector e(0):
Alternatively, consider application of the general iteration equation (86) k times starting

from initial guess x(0): At the k�th iteration step, we have

x(k) =
�
S�1T

�k
x(0) +

h�
S�1T

�k�1
+
�
S�1T

�k�2
+ :::+ S�1T+ I

i
S�1b (96)

If we select (S�1T) such that

lim

k !1
�
S�1T

�k ! [0] (97)

where [0] represents the null matrix, then, using identity�
I�

�
S�1T

���1
= I+

�
S�1T

�
+ ::::+

�
S�1T

�k�1
+
�
S�1T

�k
+ :::

we can write

x(k) !
�
I�

�
S�1T

���1
S�1b = [S�T]�1 b = A�1b

for large k: The above expression clearly explains how the iteration sequence generates a

numerical approximation to A�1b; provided condition (97) is satis�ed.

25



5.2.3 Convergence Criteria for Iteration Schemes

It may be noted that equation (89) is a linear di¤erence equation of form

z(k+1) = Bz(k) (98)

with a speci�ed initial condition z(0). Here, z 2 Rn and B is a n � n matrix. In Appendix
A, we analyzed behavior of the solutions of linear di¤erence equations of type (98). The

criterion for convergence of iteration equation (89) can be derived using results derived in

Appendix A. The necessary and su¢ cient condition for convergence of (89) can be stated as

�(S�1T) < 1

i.e. the spectral radius of matrix S�1T should be less than one.

The necessary and su¢ cient condition for convergence stated above requires computation

of eigenvalues of S�1T; which is a computationally demanding task when the matrix dimen-

sion is large. For a large dimensional matrix, if we could check this condition before starting

the iterations, then we might as well solve the problem by a direct method rather than using

iterative approach to save computations. Thus, there is a need to derive some alternate

criteria for convergence, which can be checked easily before starting iterations. Theorem 14

in Appendix A states that spectral radium of a matrix is smaller than any induced norm of

the matrix. Thus, for matrix S�1T; we have

�
�
S�1T

�
�
S�1T

k:k is any induced matrix norm. Using this result, we can arrive at the following su¢ cient
conditions for the convergence of iterationsS�1T

1
< 1 or

S�1T1 < 1
Evaluating 1 or1 norms of S�1T is signi�cantly easier than evaluating the spectral radius

of S�1T. Satisfaction of any of the above conditions implies � (S�1T) < 1: However, it may

be noted that these are only su¢ cient conditions. Thus, if kS�1Tk1 > 1 or kS�1Tk1 > 1;
we cannot conclude anything about the convergence of iterations.

If the matrixA has some special properties, such as diagonal dominance or symmetry and

positive de�niteness, then the convergence is ensured for some iterative techniques. Some of

the important convergence results available in the literature are summarized here.

De�nition 1 A matrix A is called strictly diagonally dominant if
nX

j=1(j 6=i)

jaijj < jaiij for i = 1; 2:; :::n (99)
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Theorem 2 [2] A su¢ cient condition for the convergence of Jacobi and Gauss-Seidel meth-
ods is that the matrix A of linear system Ax = b is strictly diagonally dominant.

Proof: Refer to Appendix B.

Theorem 3 [5] The Gauss-Seidel iterations converge if matrix A is symmetric and positive

de�nite.

Proof: Refer to Appendix B.

Theorem 4 [3] For an arbitrary matrix A, the necessary condition for the convergence of
relaxation method is 0 < ! < 2:

Proof: Refer to appendix B.

Theorem 5 [2] When matrix A is strictly diagonally dominant, a su¢ cient condition for

the convergence of relaxation methods is that 0 < ! � 1:
Proof: Left to reader as an exercise.

Theorem 6 [2]For a symmetric and positive de�nite matrix A, the relaxation method con-
verges if and only if 0 < ! < 2:

Proof: Left to reader as an exercise.

The Theorems 3 and 6 guarantees convergence of Gauss-Seidel method or relaxation

method when matrix A is symmetric and positive de�nite. Now, what do we do if matrix

A in Ax = b is not symmetric and positive de�nite? We can multiply both the sides of the

equation by AT and transform the original problem as follows�
ATA

�
x =

�
ATb

�
(100)

If matrix A is non-singular, then matrix
�
ATA

�
is always symmetric and positive de�nite

as

xT
�
ATA

�
x =(Ax)T (Ax) > 0 for any x 6=0 (101)

Now, for the transformed problem, we are guaranteed convergence if we use the Gauss-Seidel

method or relaxation method such that 0 < ! < 2.

Example 7 [3]Consider system Ax = b where

A =

"
2 �1
�1 2

#
(102)
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For Jacobi method

S�1T =

"
0 1=2

1=2 0

#
(103)

�(S�1T) = 1=2 (104)

Thus, the error norm at each iteration is reduced by factor of 0.5For Gauss-Seidel method

S�1T =

"
0 1=2

0 1=4

#
(105)

�(S�1T) = 1=4 (106)

Thus, the error norm at each iteration is reduced by factor of 1/4. This implies that, for the

example under consideration

1 Gauss Seidel iteration � 2 Jacobi iterations (107)

For relaxation method,

S�1T =

"
2 0

�! 2

#�1 "
2(1� !) !

0 2(1� !)

#
(108)

=

24 (1� !) (!=2)

(!=2)(1� !) (1� ! + !
2

4
)

35 (109)

�1�2 = det(S�1T) = (1� !)2 (110)

�1 + �2 = trace(S�1T) (111)

= 2� 2! + !
2

4
(112)

Now, if we plot �(S�1T) v/s !, then it is observed that �1 = �2 at ! = !opt:From equation

(110), it follows that

�1 = �2 = !opt � 1 (113)

at optimum !:Now,

�1 + �2 = 2(!opt � 1) (114)

= 2� 2!opt +
!2opt
4

(115)

) !opt = 4(2�
p
3) �= 1:07 (116)

) �(S�1T) = �1 = �2 �= 0:07 (117)

This is a major reduction in spectral radius when compared to Gauss-Seidel method. Thus,

the error norm at each iteration is reduced by factor of 1/16 (�= 0:07) if we choose ! = !opt:

28



Example 8 Consider system Ax = b where

A =

264 4 5 9

7 1 6

5 2 9

375 ; b =

264 11
1

375 (118)

If we use Gauss-Seidel method to solve for x; the iterations do not converge as

S�1T =

264 4 0 0

7 1 0

5 2 9

375
�1 264 0 �5 �9

0 0 �6
0 0 0

375 (119)

�(S�1T) = 7:3 > 1 (120)

Now, let us modify the problem by pre-multiplying Ax = b by AT on both the sides, i.e. the

modi�ed problem is
�
ATA

�
x =

�
ATb

�
: The modi�ed problem becomes

ATA =

264 90 37 123

37 30 69

123 69 198

375 ; ATb =

264 168
24

375 (121)

The matrixATA is symmetric and positive de�nite and, according to Theorem 3, the it-

erations should converge if Gauss-Seidel method is used. For the transformed problem, we

have

S�1T =

264 90 0 0

37 30 0

123 69 198

375
�1 264 0 �37 �123

0 0 �69
0 0 0

375 (122)

�(S�1T) = 0:96 < 1 (123)

and within 220 iterations (termination criterion 1� 10�5), we get following solution

x =

264 0:09370:0312

0:0521

375 (124)

which is close to the solution

x�=

264 0:09370:0313

0:0521

375 (125)

computed as x� = A�1b:
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Table 4: Rate of Convergence of Iterative Methods
Method Rate of Convergence No. of iterations for " error

Jacobi O(1=2n2) O(2n2)

Gauss_Seidel O(1=n2) O(n2)

Relaxation with optimal ! O(2=n) O(n=2)

Example 9 Consider system Ax = b where

A =

26664
7 1 �2 1

1 8 1 0

�2 1 5 �1
1 0 �1 3

37775 ; b =

26664
1

�1
1

�1

37775 (126)

If it is desired to solve the resulting problem using Jacobi method / Gauss-Seidel method, will

the iterations converge? To establish convergence of Jacobi / Gauss-Seidel method, we can

check whether A is strictly diagonally dominant. Since the following inequalities hold

Row 1 : 1 + j�2j+ 1 < 7
Row 2 : 1 + 0 + 1 < 8

Row 3 : j�2j+ 1 + j�1j < 5
Row 4 : 1 + 0 + j�1j < 3

matrix A is strictly diagonally dominant, which is a su¢ cient condition for convergence of

Jacobi / Gauss-Seidel iterations Theorem 2. Thus, Jacobi / Gauss-Seidel iterations will

converge to the solution starting from any initial guess.

From these examples, we can clearly see that the rate of convergence depends on �(S�1T):

A comparison of rates of convergence obtained from analysis of some simple problems is

presented in Table 4[2].

6 Optimization Based Methods

Unconstrained optimization is another tool employed to solve large scale linear algebraic

equations. Gradient and conjugate gradient methods for numerically solving unconstrained

optimization problems can be tailored to solve a set of linear algebraic equations. The

development of the gradient search method for unconstrained optimization for any scalar

objective function �(x) :Rn ! R is presented in Appendix C. In this section, we present

how this method can be tailored for solving Ax = b:
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6.1 Gradient Search Method

Consider system of linear algebraic equations of the form

Ax = b ; x;b 2 Rn (127)

where A is a non-singular matrix. De�ning objective function

�(x) =
1

2
(Ax� b)T (Ax� b) (128)

the necessary condition for optimality requires that

@�(x)

@x
= AT (Ax� b) =0 (129)

Since A is assumed to be nonsingular, the stationarity condition is satis�ed only at the

solution of Ax = b: The stationary point is also a minimum as
h
@2�(x)
@x2

i
= ATA is a positive

de�nite matrix. Thus, we can compute the solution of Ax = b by minimizing

�(x) =
1

2
xT
�
ATA

�
x�
�
ATb

�T
x (130)

When A is positive de�nite, the minimization problem can be formulated as follows

�(x) =
1

2
xTAx� bTx (131)

as it can be shown that the above function achieves a minimum for x* where Ax*=b. In the

development that follows, for the sake of simplifying the notation, it is assumed that A is

symmetric and positive de�nite. When the original problem does not involve a symmetric

positive de�nite matrix, then it can always be transformed by pre-multiplying both sides of

the equation by AT :

To arrive at the gradient search algorithm, given a guess solution x(k); consider the line

search problem (ref. Appendix C for details)

�k =
min

�
�
�
x(k) + �g(k)

�
where

g(k) = �(Ax(k)�b) (132)

Solving the one dimensional optimization problem yields

�k =
bTg(k)

(g(k))
T
Ag(k)

Thus, the gradient search method can be summarized in Table (5).
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Table 5: Gradient Search Method for Solving Linear Algebraic Equations
INITIALIZE: x(0); "; kmax; �

(0); �

k = 0

g(0) = b�Ax(0)

WHILE [(� > ") AND (k < kmax)]

�k = �
bTg(k)

(g(k))
T
Ag(k)

x(k+1) = x(k) + �k g
(k)

g(k+1) = b�Ax(k+1)

� =

g(k+1) � g(k)
2

kg(k+1)k2
g(k) = g(k+1)

k = k + 1

END WHILE

6.2 Conjugate Gradient Method

The gradient method makes fast progress initially when the guess is away from the optimum.

However, this method tends to slow down as iterations progress. It can be shown that

directions there exist better descent directions than the negative of the gradient direction.

One such approach is conjugate gradient method. In conjugate directions method, we take

search directions {s(k) : k = 0; 1; 2; ...} such that they are orthogonal with respect to matrix

A, i.e. �
s(k)
�T
As(k�1) = 0 for all k (133)

Such directions are called A-conjugate directions. To see how these directions are con-

structed, consider recursive scheme

s(k) = �ks
(k�1) + g(k) (134)

s(k�1) = 0 (135)

Premultiplying
�
s(k)
�T
by As(k�1); we have�

s(k)
�T
As(k�1) = �k

�
s(k�1)

�T
As(k�1) +

�
g(k)
�T
As(k�1) (136)

A-conjugacy of directions {s(k) : k = 0; 1; 2; ...} can be achieved if we choose

�k = �
�
g(k)
�T
As(k�1)

[s(k�1)]
T
As(k�1)

(137)
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Thus, given a search direction s(k�1); new search direction is constructed as follows

s(k) = �
�
g(k)
�T
As(k�1)

[s(k�1)]
T
As(k�1)

s(k�1) + g(k)

= g(k) �


g(k);bs(k�1)�

A
bs(k�1) (138)

where bs(k�1) = s(k�1)q
[s(k�1)]

T
As(k�1)

=
s(k�1)p

hs(k�1); s(k�1)iA

It may be that matrix A is assumed to be symmetric and positive de�nite. Now, recursive

use of equations (134-135) yields

s(0) = g(0)

s(1) = �1s
(0) + g(1) = �1g

(0) + g(1)

s(2) = �2s
(1) + g(2)

= �2�1g
(0) + �2g

(1) + g(2)

:::: = ::::

s(n) = (�n:::�1)g
(0) + (�n:::�2)g

(1) + :::+ g(n)

Thus, this procedure sets up each new search direction as a linear combination of all previous

search directions and newly determined gradient.

Now, given the new search direction, the line search is formulated as follows

�k =
min

�
�
�
x(k) + �s(k)

�
(139)

Solving the one dimensional optimization problem yields

�k =
bT s(k)

(s(k))
T
As(k)

(140)

Thus, the conjugate gradient search algorithm for solving Ax = b is summarized in Table

(6).

If conjugate gradient method is used for solving the optimization problem, it can be

theoretically shown that the minimum can be reached in n steps. In practice, however, we

require more than n steps to achieve �(x) <" due to the rounding o¤ errors in computation

of the conjugate directions. Nevertheless, when n is large, this approach can generate a

reasonably accurate solution with considerably less computations.
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Table 6: Conjugate Gradient Algorithm to Solve Linear Algebraic Equations
INITIALIZE: x(0); "; kmax; �

(0); �

k = 0

g(0) = b�Ax(0)

s(�1) = 0

WHILE [(� > ") AND (k < kmax)]

�k = �
�
g(k)
�T
As(k�1)

[s(k�1)]
T
As(k�1)

s(k) = �ks
(k�1) + g(k)

�k = �
bT s(k)

(s(k))
T
As(k)

x(k+1) = x(k) + �k s
(k)

g(k+1) = b�Ax(k+1)

� =

g(k+1) � g(k)
2

kg(k+1)k2
k = k + 1

END WHILE

7 Matrix Conditioning and Behavior of Solutions

One of the important issue in computing solutions of large dimensional linear system of

equations is the round-o¤ errors caused by the computer. Some matrices are well conditioned

and the computations proceed smoothly while some are inherently ill conditioned, which

imposes limitations on how accurately the system of equations can be solved using any

computer or solution technique. We now introduce measures for assessing whether a given

system of linear algebraic equations is inherently ill conditioned or well conditioned.

Normally any computer keeps a �xed number of signi�cant digits. For example, consider

a computer that keeps only �rst three signi�cant digits. Then, adding

0:234 + 0:00231! 0:236

results in loss of smaller digits in the smaller number. When a computer can commits

millions of such errors in a complex computation, the question is, how do these individual

errors contribute to the �nal error in computing the solution? Suppose we solve for Ax = b

using LU decomposition, the elimination algorithm actually produce approximate factors

L0 and U0 :Thus, we end up solving the problem with a wrong matrix, i.e.

A+ �A = L0U0 (141)
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instead of right matrixA = LU. In fact, due to round o¤ errors inherent in any computation

using computer, we actually end up solving the equation

(A+ �A)(x+�x) = b+�b (142)

The question is, how serious are the errors �x in solution x, due to round o¤ errors in

matrix A and vector b? Can these errors be avoided by rearranging computations or are

the computations inherent ill-conditioned? In order to answer these questions, we need to

develop some quantitative measure for matrix conditioning.
The following section provides motivation for developing a quantitative measure for ma-

trix conditioning. In order to develop such a index, we need to de�ne the concept of norm of a

m�n matrix. The formal de�nition of matrix condition number and methods for computing
it are presented in the later sub-sections.

7.1 Motivation [3]

In many situations, if the system of equations under consideration is numerically well
conditioned, then it is possible to deal with the menace of round o¤ errors by re-arranging
the computations. If the system of equations is inherently an ill conditioned system, then
the rearrangement trick does not help. Let us try and understand this by considering two

simple examples and a computer that keeps only three signi�cant digits.

Consider the system (System-1)"
0:0001 1

1 1

#"
x1

x2

#
=

"
1

2

#
(143)

If we proceed with Gaussian elimination without maximal pivoting , then the �rst elimination

step yields "
0:0001 1

0 �9999

#"
x1

x2

#
=

"
1

�9998

#
(144)

and with back substitution this results in

x2 = 0:999899 (145)

which will be rounded o¤ to

x2 = 1 (146)

in our computer which keeps only three signi�cant digits. The solution then becomesh
x1 x2

iT
=
h
0:0 1

i
(147)
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However, using maximal pivoting strategy the equations can be rearranged as"
1 1

0:0001 1

#"
x1

x2

#
=

"
2

1

#
(148)

and the Gaussian elimination yields"
1 1

0 0:9999

#"
x1

x2

#
=

"
2

0:9998

#
(149)

and again due to three digit round o¤ in our computer, the solution becomesh
x1 x2

iT
=
h
1 1

i
Thus, when A is a well conditioned numerically and Gaussian elimination is employed, the

main reason for blunders in calculations is wrong pivoting strategy. If maximum pivoting

is used then natural resistance of the system of equations to round-o¤ errors is no longer

compromised.

Now, to understand di¢ culties associated with ill conditioned systems, consider an-
other system (System-2) "

1 1

1 1:0001

#"
x1

x2

#
=

"
2

2

#
(150)

By Gaussian elimination"
1 1

0 0:0001

#"
x1

x2

#
=

"
2

0

#
=)

"
x1

x2

#
=

"
2

0

#
(151)

If we change R.H.S. of the system 2 by a small amount"
1 1

1 1:0001

#"
x1

x2

#
=

"
2

2:0001

#
(152)

"
1 1

0 0:0001

#"
x1

x2

#
=

"
2

0:0001

#
=)

"
x1

x2

#
=

"
1

1

#
(153)

Note that change in the �fth digit of second element of vector b was ampli�ed to change

in the �rst digit of the solution. Here is another example of an illconditioned matrix [[2]].

Consider the following system

Ax =

26664
10 7 8 7

7 5 6 5

8 6 10 9

7 5 9 10

37775x =
26664
32

23

33

31

37775 (154)
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whose exact solution is x =
h
1 1 1 1

iT
: Now, consider a slightly perturbed system

26664A+
26664

0 0 0:1 0:2

0:08 0:04 0 0

0 �0:02 �0:11 0

�0:01 �0:01 0 �0:02

37775
37775x =

26664
32

23

33

31

37775 (155)

This slight perturbation in A matrix changes the solution to

x =
h
�81 137 �34 22

iT
Alternatively, if vector b on the R.H.S. is changed to

b=
h
31:99 23:01 32:99 31:02

iT
then the solution changes to

x =
h
0:12 2:46 0:62 1:23

iT
Thus, matrices A in System 2 and in equation (154) are ill conditioned. Hence, no numer-
ical method can avoid sensitivity of these systems of equations to small permutations, which

can result even from truncation errors. The ill conditioning can be shifted from one place to

another but it cannot be eliminated.

7.2 Condition Number [3]

Condition number of a matrix is a measure to quantify matrix Ill-conditioning. Consider

system of equations given asAx = b:We examine two situations: (a) errors in representation

of vector b and (b) errors in representation of matrix A.

7.2.1 Case: Perturbations in vector b [3]

Consider the case when there is a change in b;i.e., b changes to b + �b in the process of

numerical computations. Such an error may arise from experimental errors or from round

o¤ errors. This perturbation causes a change in solution from x to x+ �x; i.e.

A(x+ �x) = b+ �b (156)

By subtracting Ax = b from the above equation we have

A�x = �b (157)
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To develop a measure for conditioning of matrix A; we compare relative change/error in

solution,i.e. jj�xjj = jjxjj to relative change in b ,i.e. jj�bjj = jjbjj: To derive this relationship,
we consider the following two inequalities

�x = A�1�b) jj�xjj � jjA�1jj jj�bjj (158)

Ax = b) jjbjj = jjAxjj � jjAjj jjxjj (159)

which follow from the de�nition of induced matrix norm. Combining these inequalities, we

can write

jj�xjj jjbjj � jjA�1jj jjAjj jjxjj jj�bjj (160)

) jj�xjj
jjxjj � (jjA

�1jj jjAjj) jj�bjjjjbjj (161)

) jj�xjj=jjxjj
jj�bjj=jjbjj � jjA

�1jj jjAjj (162)

It may be noted that the above inequality holds for any vectors b and �b. The number

c(A) = jjA�1jj jjAjj (163)

is called as condition number of matrix A. The condition number gives an upper bound
on the possible ampli�cation of errors in b while computing the solution [3].

7.2.2 Case: Perturbation in matrix A[3]

Suppose ,instead of solving for Ax = b; due to truncation errors, we end up solving

(A+ �A)(x+ �x) = b (164)

Then, by subtracting Ax = b from the above equation we obtain

A�x+ �A(x+ �x) = 0 (165)

) �x = �A�1�A(x+ �x) (166)

Taking norm on both the sides, we have

jj�xjj = jjA�1�A(x+ �x)jj (167)

jj�xjj � jjA�1jj jj�Ajj jjx+ �xj (168)
jj�xjj

jjx+ �xjj � (jjA�1jj jjAjj) jj�AjjjjAjj (169)

jj�xjj=jjx+ �xjj
jj�Ajj=jjAjj � c(A) = jjA�1jj jjAjj (170)
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Again,the condition number gives an upper bound on % change in solution to % error A.

In simple terms, the condition number of a matrix tells us how serious is the error in

solution ofAx = b due to the truncation or round o¤errors in a computer. These inequalities

mean that round o¤ error comes from two sources

� Inherent or natural sensitivity of the problem,which is measured by c(A)

� Actual errors �b or �A.

It has been shown that the maximum pivoting strategy is adequate to keep (�A) in

control so that the whole burden of round o¤ errors is carried by the condition number c(A).

If condition number is high (>1000), the system is ill conditioned and is more sensitive to

round o¤errors. If condition number is low (<100) system is well conditioned and you should

check your algorithm for possible source of errors.

7.2.3 Computations of condition number

Let �n denote the largest magnitude eigenvalue of matrix A and �1 denote the smallest

magnitude eigen value of A. Then, we know that

jjAjj22 = �(ATA) = �n (171)

Also,

jjA�1jj22 = �[(A�1)TA�1] = �
�
(AAT )�1

�
(172)

This follows from identity

(A�1A)T = I

AT (A�1)T = I

(AT )�1 = (A�1)T (173)

Now, if � is eigenvalue of ATA and v is the corresponding eigenvector, then

(ATA)v = �v (174)

AAT (Av) = �(Av) (175)

� is also eigenvalue of AAT and (Av) is the corresponding eigenvector. Thus, we can write

jjA�1jj22 = �
�
(AAT )�1

�
= �

�
(ATA)�1

�
(176)

Also, since AAT is a symmetric positive de�nite matrix, we can diagonalize it as

ATA = 	�	T (177)
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) (ATA)�1 = [	�	T ]�1 = (	T )�1
�
��1

�
	�1 = 	��1	T

as 	 is a unitary matrix. Thus, if � is eigen value of ATA then 1=� is eigen value of

(ATA)�1: If �1smallest eigenvalue of ATA then 1=�1 is largest magnitude eigenvalue of

ATA

) �[(ATA)�1] = 1= �1

Thus, the condition number of matrix A can be computed using 2-norm as

c2(A) = jjAjj2 jjA�1jj2 = (�n=�1)
1=2

where �n and �1 are largest and smallest magnitude eigenvalues of ATA:

The condition number can also be estimated using any other norm. For example, if we

use 1� norm; then
c1(A) = jjAjj1 jjA�1jj1

Estimation of condition number by this approach, however, requires computation of A�1,

which can be unreliable if A is ill conditioned.

Example 10 [8]Consider the Hilbert matrix discussed in the module Problem Discretization
using Approximation Theory. These matrices, which arise in simple polynomial approxima-

tion are notoriously ill conditioned and c(Hn)!1 as n!1: For example, consider

H3 =

264 1 1=2 1=3

1=2 1=3 1=4

1=3 1=4 1=5

375 ; H�1
3 =

264 9 �36 30

�36 192 �180
30 �180 180

375
kH3k1 = kH3k1 = 11=6 and

H�1
3


1
=
H�1

3


1 = 408

Thus, condition number can be computed as c1(H3) = c1(H3) = 748: For n = 6, c1(H3)

= c1(H3) = 29� 106; which is extremely bad.
Even for n = 3, the e¤ects of rounding o¤ can be quite serious. For, example, the solution

of

H3x =

264 11=613=12

47=60

375
is x =

h
1 1 1

iT
: If we round o¤ the elements of H3 to three signi�cant decimal digits,

we obtain 264 1 0:5 0:333

0:5 0:333 0:25

0:333 0:25 0:2

375x =
264 1:831:08

0:783

375
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then the solution changes to x+ �x =
h
1:09 0:488 1:491

iT
: The relative perturbation in

elements of matrix H3 does not exceed 0.3%. However, the solution changes by 50%! The

main indicator of ill-conditioning is that the magnitudes of the pivots become very small when

Gaussian elimination is used to solve the problem.

Example 11 Consider matrix

A =

264 1 2 3

4 5 6

7 8 9

375
This matrix is near singular with eigen values (computed using Scilab)

�1 = 16:117 ;�2 = �1:1168 ; �3 = �1:3� 10�15

has the condition number of c2(A) = 3:8131� 1016: If we attempt to compute inverse of this
matrix using Scilab, we get following result

A�1 = 1016 �

264 �0:4504 0:9007 �0:4504
0:9007 �1:8014 0:9007

�0:4504 0:9007 �0:4504

375
with a warning: �Matrix is close to singular or badly scaled.� The di¢ culties in computing

inverse of this matrix are apparent if we further compute product A�A�1; which yields

A�A�1 =

264 2 0 2

8 0 0

16 0 8

375
On the other hand, consider matrix

B = 10�17 �

264 1 2 1

2 1 2

1 1 3

375
with eigenvalues

�1 = 4:73� 10�17 ;�2 = �1� 10�17 ; �3 = 1:26� 10�17

The eigenvalues are �close to zero� the matrix is almost like a null matrix. However, the

condition number of this matrix is c2(B) = 5:474: If we proceed to compute of B�1 using

Scilab, we get

B�1 = 1016 �

264 �1:67 8:33 �5
6:67 �3:33 0

�1:67 �1:67 5

375
and B�B�1yields I; i.e. identity matrix.
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Thus, it is important to realize that each system of linear equations has a inherent

character, which can be quanti�ed using the condition number of the associated matrix.

The best of the linear equation solvers cannot overcome the computational di¢ culties posed

by inherent ill conditioning of a matrix. As a consequence, when such ill conditioned matrices

are encountered, the results obtained using any computer or any solver are unreliable.

8 Summary

In these lecture notes, we have developed methods for e¢ ciently solving large dimensional

linear algebraic equations. To begin with, we discuss geometric conditions for existence of

the solutions. The direct methods for dealing with sparse matrices are discussed next. Iter-

ative solution schemes and their convergence characteristics are discussed in the subsequent

section. The concept of matrix condition number is then introduced to analyze susceptibility

of a matrix to the round-o¤ errors.

9 Appendix A: Behavior of Solutions of Linear Di¤er-

ence Equations

Consider di¤erence equation of the form

z(k+1) = Bz(k) (178)

where z 2 Rn and B is a n � n matrix. Starting from an initial condition z(0), we get a

sequence of vectors
�
z(0); z(1); :::; z(k); :::

	
such that

z(k) = Bkz(0)

for any k: Equations of this type are frequently encountered in numerical analysis. We

would like to analyze asymptotic behavior of equations of these type without solving them

explicitly.

To begin with, let us consider scalar linear iteration scheme

z(k+1) = �z(k) (179)

where z(k) 2 R and � is a real scalar. It can be seen that

z(k) = (�)kz(0) ! 0 as k !1 (180)
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if and only if j�j < 1:To generalize this notation to a multidimensional case, consider equation
of type (178) where z(k) 2 Rn: Taking motivation from the scalar case, we propose a solution
to equation (178) of type

z(k) = �kv (181)

where � is a scalar and v 2 Rn is a vector. Substituting equation (181) in equation (178),
we get

�k+1v = B(�kv) (182)

or �k (�I �B)v = 0 (183)

Since we are interested in a non-trivial solution, the above equation can be reduced to

(�I �B)v = 0 (184)

where v 6= 0. Note that the above set of equations has n equations in (n + 1)unknowns

(� and n elements of vector v): Moreover, these equations are nonlinear. Thus, we need to

generate an additional equation to be able to solve the above set exactly. Now, the above

equation can hold only when the columns of matrix (�I �B) are linearly dependent and v
belongs to null space of (�I �B) : If columns of matrix (�I �B) are linearly dependent,
matrix (�I �B) is singular and we have

det (�I �B) = 0 (185)

Note that equation (185) is nothing but the characteristic polynomial of matrix A and its

roots are called eigenvalues of matrix A. For each eigenvalue �i we can �nd the corresponding

eigen vector v(i) such that

Bv(i) = �iv
(i) (186)

Thus, we get n fundamental solutions of the form (�i)
k v(i) to equation (178) and a general

solution to equation (178) can be expressed as linear combination of these fundamental

solutions

z(k) = �1 (�1)
k v(1) + �2 (�2)

k v(2) + :::::+ �n (�n)
k v(n) (187)

Now, at k = 0 this solution must satisfy the condition

z(0) = �1v
(1) + (�2)

k v(2) + :::::+ �nv
(n) (188)

=
h
v(1) v(2) :::: v(n)

i h
�1 �2 :::: �n

iT
(189)

= 	� (190)
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where 	 is a n � n matrix with eigenvectors as columns and � is a n � 1 vector of n
coe¢ cients. Let us consider the special case when the eigenvectors are linearly independent.

Then, we can express � as

� =	�1z(0) (191)

Behavior of equation (187) can be analyzed as k ! 1:Contribution due to the i�th funda-
mental solution (�i)

k v(i) ! 0 if and only if j�ij < 1:Thus, z(k) ! 0 as k ! 1 if and only

if

j�ij < 1 for i = 1; 2; ::::n (192)

If we de�ne spectral radius of matrix A as

�(B) =
max

i
j�ij (193)

then, the condition for convergence of iteration equation (178) can be stated as

�(B) < 1 (194)

Equation (187) can be further simpli�ed as

z(k) =
h
v(1) v(2) :::: v(n)

i26664
(�1)

k 0 ::::: 0

0 (�2)
k 0 :::

:::: :::: ::::: ::::

0 :::: 0 (�n)
k

37775
26664
�1

�2

:::

�n

37775 (195)

= 	

26664
(�1)

k 0 ::::: 0

0 (�2)
k 0 :::

:::: :::: ::::: ::::

0 :::: 0 (�n)
k

37775	�1z(0) = 	 (�)k 	�1z(0) (196)

where � is the diagonal matrix

� =

26664
�1 0 ::::: 0

0 �2 0 :::

:::: :::: ::::: ::::

0 :::: 0 �n

37775 (197)

Now, consider set of n equations

Bv(i) = �iv
(i) for (i = 1; 2; ::::n) (198)
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which can be rearranged as

	 =
h
v(1) v(2) :::: v(n)

i

B	 =

26664
�1 0 ::::: 0

0 �2 0 :::

:::: :::: ::::: ::::

0 :::: 0 �n

37775	 (199)

or B = 	�	�1 (200)

Using above identity, it can be shown that

Bk =
�
	�	�1�k = 	 (�)k 	�1 (201)

and the solution of equation (178) reduces to

z(k) = Bkz(0) (202)

and z(k) ! 0 as k ! 1 if and only if �(B) < 1: The largest magnitude eigen value, i.e.,

�(B) will eventually dominate and determine the rate at which z(k) ! �0: The result proved

in this section can be summarized as follows:

Theorem 12 A sequence of vectors
�
z(k) : k = 0; 1; ; 2; ::::

	
generated by the iteration scheme

z(k+1) = Bz(k)

where z 2Rn and B 2 Rn�Rn; starting from any arbitrary initial condition z(0) will converge
to limit z� = �0 if and only if

�(B) < 1

Note that computation of eigenvalues is a computationally intensive task. The following

theorem helps in deriving a su¢ cient conditions for convergence of linear iterative equations.

Theorem 13 For a n � n matrix B, the following inequality holds for any induced matrix
norm

�(B) � kBk (203)

Proof. Let �i be eigen value of B and v(i) be the corresponding eigenvector. Then, we can
write Bv(i) = �iv(i) = j�ijv(i) (204)

45



for i = 1; 2; :::; n: From these equations, it follows that

�(B) =
max

i
j�ij =

max

i

Bv(i)
kv(i)k (205)

Using the de�nition of the induced matrix norm, we have

kBzk
kzk � kBk (206)

for any z 2Rn. Thus, it follows that

�(B) =
max

i

Bv(i)
kv(i)k � kBk (207)

Since �(B) � kBk < 1 ) �(B) < 1, a su¢ cient condition for convergence of iterative

scheme can be derived as follows

kBk < 1 (208)

The above su¢ cient condition is more useful from the viewpoint of computations as kBk1
and kBk1 can be computed quite easily. On the other hand, the spectral radius of a large

matrix can be comparatively di¢ cult to compute.

10 Appendix B: Theorems on Convergence of Iterative

Schemes

Theorem 2 [2]: A su¢ cient condition for the convergence of Jacobi and Gauss-Seidel meth-
ods is that the matrix A of linear system Ax = b is strictly diagonally dominant.

Proof. For Jacobi method, we have

S�1T = �D�1 [L+U] (209)

=

266666664

0 �a12
a11

::::: �a1n
a11

�a12
a22

0 ::::: ::::

::::: ::::: :::: � an�1;n
an�1;n�1

� a12
ann

::::: ::::: 0

377777775
(210)
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As matrix A is diagonally dominant, we have

nX
j=1(j 6=i)

jaijj < jaiij for i = 1; 2:; :::n (211)

)
nX

j=1(j 6=i)

����aijaii
���� < 1 for i = 1; 2:; :::n (212)

S�1T1 =
max

i

24 nX
j=1(j 6=i)

����aijaii
����
35 < 1 (213)

Thus, Jacobi iteration converges if A is diagonally dominant.

For Gauss Seidel iterations, the iteration equation for i�th component of the vector is

given as

x
(k+1)
i =

�
1

aii

�"
bi �

i�1X
j=1

aijx
(k+1)
j �

nX
j=i+1

aijx
(k)
j

#
(214)

Let x� denote the true solution of Ax = b: Then, we have

x�i =

�
1

aii

�"
bi �

i�1X
j=1

aijx
�
j �

nX
j=i+1

aijx
�
j

#
(215)

Subtracting (215) from (214), we have

x
(k+1)
i � x�i =

�
1

aii

�" i�1X
j=1

aij

�
x�j � x

(k+1)
j

�
+

nX
j=i+1

aij

�
x�j � x

(k)
j

�#
(216)

or ���x(k+1)i � x�i
��� � " i�1X

j=1

����aijaii
���� ����x�j � x(k+1)j

����+ nX
j=i+1

����aijaii
���� ����x�j � x(k)j ����

#
(217)

Since x� � x(k)1 = max

j

����x�j � x(k)j ����
we can write ���x(k+1)i � x�i

��� � pi x� � x(k+1)1 + qi x� � x(k)1 (218)

where

pi =
i�1X
j=1

����aijaii
���� ; qi =

nX
j=i+1

����aijaii
���� (219)

Let s be value of index i for which��x(k+1)s � x�s
�� = max

j

����x�j � x(k+1)j

���� (220)
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Then, assuming i = s in inequality (218), we getx� � x(k+1)1 � pi x� � x(k+1)1 + qi x� � x(k)1 (221)

or x� � x(k+1)1 � qs
1� ps

x� � x(k)1 (222)

Let

� =
max

j

qj
1� pj

(223)

x� � x(k+1)1 � qs
1� ps

x� � x(k)1 (224)

then it follows that x� � x(k+1)1 � �x� � x(k)1 (225)

Now, as matrix A is diagonally dominant, we have

0 < pi < 1 and 0 < qi < 1 (226)

0 < pi + qi =
nX

j=1(j 6=i)

����aijaii
���� < 1 (227)

Let

� =
max

i

24 nX
j=1(j 6=i)

����aijaii
����
35 (228)

Then, we have

pi + qi � � < 1 (229)

It follows that

qi � � � pi (230)

and

� =
qi

1� pi
� � � pi
1� pi

� � � pi�
1� pi

= � < 1 (231)

Thus, it follows from inequality (225) thatx� � x(k)1 � �k x� � x(0)1
i.e. the iteration scheme is a contraction map and

lim

k !1
x(k) = x�
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Theorem 3 [5]: The Gauss-Seidel iterations converge if matrix A is symmetric and

positive de�nite.

Proof. For Gauss-Seidel method, when matrix A is symmetric, we have

S�1T = (L+D)�1(�U) = �(L+D)�1(LT )

Now, let e represent unit eigenvector of matrix S�1T corresponding to eigenvalue �, i.e.

�(L+D)�1(LT )e = �e

or LTe = ��(L+D)e

Taking inner product of both sides with e;we have

LTe; e

�
= �� h(L+D)e; ei

� = �


LTe; e

�
hDe; ei+ hLe; ei = �

he;Lei
hDe; ei+ hLe; ei

De�ning

� = hLe; ei = he;Lei

� = hDe; ei =
nX
i=1

aii (ei)
2 > 0

we have

� = � �

�+ �
) j�j =

���� �

�+ �

����
Note that � > 0 follows from the fact that trace of matrix A, is positive as eigenvalues of A

are positive. Using positive de�niteness of matrix A; we have

hAe; ei = hLe; ei+ hDe; ei+


LTe; e

�
= � + 2� > 0

This implies

�� < (� + �)

Since � > 0; we can say that

� < (� + �)

i.e.

j�j < (� + �)

This implies

j�j =
���� �

�+ �

���� < 1
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Theorem 4 [3]: For an arbitrary matrix A, the necessary condition for the convergence
of relaxation method is 0 < ! < 2:

Proof. The relaxation iteration equation can be given as

x(k+1) = (D+ !L)�1
�
[(1� !)D� !U]x(k) + ! b

�
(232)

De�ning

B! = (D+ !L)�1 [(1� !)D� !U] (233)

det(B!) = det
�
(D+ !L)�1

�
det [(1� !)D� !U] (234)

Now, using the fact that the determinant of a triangular matrix is equal to multiplication of

its diagonal elements, we have

det(B!) = det
�
D�1� det [(1� !)D] = (1� !)n (235)

Using the result that product of eigenvalues of B! is equal to determinant of B!;we have

�1�2:::�n = (1� !)n (236)

where �i (i = 1; 2:::n) denote eigenvalues of B!:

j�1�2:::�nj = j�1j j�2j :::: j�nj = j(1� !)nj (237)

It is assumed that iterations converge. Now, convergence criterion requires

�i(B!) < 1 for i = 1; 2; :::n (238)

) j�1j j�2j :::: j�nj < 1 (239)

) j(1� !)nj < 1 (240)

This is possible only if

0 < ! < 2 (241)

The optimal or the best choice of the ! is the one that makes spectral radius �(B!)smallest

possible and gives fastest rate of convergence.
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11 Appendix C: Steepest Descent / Gradient Search

Method

In the module on Problem Discretization using Approximation Theory, we derived the nec-

essary condition for a point x =x to be an extreme point of a twice di¤erentiable scalar

function �(x) :Rn ! R and su¢ cient conditions for the extreme point to qualify either as a

minimum or a maximum. The question that needs to be answered in practice is, given �(x)

how does one locate an extreme point x: A direct approach can be to solve for n simultaneous

equations

r�(x) =0 (242)

in n unknowns. When these equations are bell behaved nonlinear functions of x; an iterative

scheme, such as Newton-Raphson method, can be employed. Alternatively, iterative search

schemes can be derived using evaluations of �(x) and its derivatives. The steepest descent

/ gradient method is the simplest iterative search scheme in the unconstrained optimization

and forms a basis for developing many sophisticated optimization algorithms. In this section,

we discuss details of this numerical optimization approach.

11.1 Gradient / Steepest Descent / Cauchy�s method

Set of vectors x 2 RNsuch that �(x) = � where � is a constant, is called the level surface of
�(x) for value �. By tracing out one by one level surfaces we obtain contour plot (see Figure

2). Suppose x = x(k) is a point lying on one of the level surfaces. If �(x) is continuous and

di¤erentiable then, using Taylor series expansion in a neighborhood of x(k) we can write

�(x) = �(x(k)) +
�
r�(x(k))

�T
(x� x(k)) + 1

2
(x� x(k))T

�
r2�(x(k))

�
(x� x(k)) + :::: (243)

If we neglect the second and higher order terms, we obtained

�(x) = �(x(k) +�x) ' �(x(k)) +
�
r�(x(k))

�T
�x = C (244)

�x = (x� x(k)) (245)

This is equation of the plane tangent to surface �(x) at point x(k). The equation of level

surface through x(k) is

C = �(x) = �(x(k)) (246)

Combining above two equations, the equation of tangent surface at x = x(k) is obtained as

(x� x(k))Tr�(x(k)) = 0 (247)
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Figure 2: Contour plots (level surfaces) of y = �(x) and the local tangent and the steepest

descent direction at point (n2,n1)

Thus, gradient at x = x(k) is perpendicular to the level surface passing through �(x(k)) (See

Figure 2).

We will now show that it points in the direction in which the function increases most

rapidly, and in fact, r�(x(k)) is the direction of maximum slope. If�
r�(x(k))

�T
�x < 0

then

�(x(k) +�x) < �(x(k)) (248)

and �x is called as descent direction. Suppose we �x our selves to unit sphere in the

neighborhood of x = x(k) i.e. set of all x such that k�xk � 1 and want to �nd direction �x
such that ��(x)T�x algebraically minimum. Using Cauchy-Schwartz inequality together

with k�xk � 1; we have����r�(x(k))�T �x��� � r�(x(k)) k�xk � r�(x(k)) (249)

This implies

�
r�(x(k)) � �r�(x(k))�T �x � r�(x(k)) (250)
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and minimum value
�
r�(x(k))

�T
�x can attain when �x is restricted within the unit ball

equals �
r�(x(k)) : In fact, the equality will hold if and only if �x is chosen colinear with

r�(x(k)). Let g(k) denote unit vector along the -ve of the gradient direction, i.e.

g(k) = � r�(x(k))
kr�(x(k))k (251)

Then, g(k) is the direction of steepest or maximum descent in which �(x(k) +�x)� �(x(k))
reduces at the maximum rate. While these arguments provides us with the local direction

for the steepest descent, they does not give any clue on how much we should move in that

direction so that the function �(x) continues to decresae. To arrive at an optimal step size,

the subsequent guess is constructed as follows

x(k+1) = x(k) + �kg
(k) (252)

and the step size �k is determined by solving the following one dimensional minimization

(line search) problem

�k =
min

�
�
�
x(k) + �g(k)

�
There are several numerical approaches available for solving this one dimensional optimiza-

tion problem (ref [9]). An approach based on cubic polynomial interpolation is presented in

the next sub-section. The iterative gradient based search algorithm can be summarized as

in Table 7.

Alternate criteria which can be used for termination of iterations are as followsx(k+1) � x(k)
kx(k+1)k � "1

The Method of steepest descent may appear to be the best unconstrained minimization

method. However, due to the fact that steepest descent is a local property, this method is

not e¤ective in many problems. If the objective function are distorted, then the method can

be hopelessly slow.

11.2 Line Search: One Dimensional Optimization

In any multi-dimensional minimization problem, at each iteration, we have to solve a one

dimensional minimization problem of the form

min

�
�(�) =

min

�
�
�
x(k) + �s(k)

�
(253)
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Table 7: Gradient Search Algorithm
INITIALIZE: x(0); "; kmax; �

(0); �

k = 0

g(0) = � r�(x(0))
kr�(x(0))k

WHILE [(� > ") AND (k < kmax)]

�k =
min

�
�
�
x(k) + �g(k)

�
x(k+1) = x(k) + �k g

(k)

g(k+1) = � r�(x(k+1))
kr�(x(k+1))k

� =

r�(x(k+1))�r�(x(k))
2

kr�(x(k+1))k2
k = k + 1

END WHILE

where s(k) is the descent (search) direction. (In gradient search method, s(k) = g(k); i.e. -ve

of the gradient direction.) There are many ways of solving this problem numerically ([9]).

In this sub-section, we discuss the cubic interpolation method, which is one of the popular

techniques for performing the line search.

The �rst step in the line search is to �nd bounds on the optimal step size ��: These are

established by �nding two points, say � and �, such that the slope d�=d�

d�

d�
=

�
@�(x(k) + �s(k))

@(x(k) + �s(k))

�T
@(x(k) + �s(k))

@�
(254)

=
�
r�(x(k) + �s(k))

�T
s(k) (255)

has opposite signs at these points. We know that at � = 0;

d�(0)

d�
=
�
r�(x(k))

�T
s(k) < 0 (256)

as s(k) is assumed to be a descent direction. Thus, we take � corresponding to � = 0 and

try to �nd a point � = � such that d�=d� > 0: The point � can be taken as the �rst value

out of � = h; 2h; 4h; 8h; :::: for which d�=d� > 0;where h is some pre-assigned initial step

size. As d�=d� changes sign in the interval [0; �]; the optimum �� is bounded in the interval

[0; �]:

The next step is to approximate �(�) over interval [0; �] by a cubic interpolating poly-

nomial for the form

�(�) = a+ b�+ c�2 + d�3 (257)
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The parameters a and b be computed as

�(0) = a = �(x(k))

d�(0)

d�
= b =

�
r�(x(k))

�T
s(k)

The parameters c and d can be computed by solving

�(�) = a+ b� + c�2 + d�3

d�(�)

d�
= b+ 2c� + 3d�2

i.e. by solving "
�2 �3

2� 3�2

#"
c

d

#
=

"
�
�
x(k) + �s(k)

�
� a� �b�

s(k)
�T r� �x(k) + �s(k)�� b

#

The application of necessary condition for optimality yields

d�

d�
= b+ 2c�+ 3d�2 = 0 (258)

i.e.

�� =
�c�

p
(c2 � 3bd)
3d

(259)

One of the two values correspond to the minimum. The su¢ ciency condition for minimum

requires
d2�

d�2
= 2c+ 6d�� > 0 (260)

The fact that d�=d� has opposite sign at � = 0 and � = � ensures that the equation 258

does not have imaginary roots.
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Table 8: Line Search using Cubic Interpolation Algorithm
INITIALIZE: x(k); s(k); h

Step 1: Find �

� = h

WHILE [d�(�)=d� < 0]

� = 2�

END WHILE

Step 2: Solve for a; b; c and d using x(k); s(k) and �

Step 3: Find �� using su¢ cient condition for optimality

Exercise

1. The true solution Ax = b is slightly di¤erent from the elimination solution to LUx0 =

b; A � LU misses zero matrix because of round o¤ errors. One possibility is to do

everything in double precision, but a better and faster way is iterative re�nement:

Compute only one vector r = b � Ax0 in double precision, solveLUy = r,and add

correction y to x0 to generate an improved solution x1 = x0 + y:

Problem:Multiply x1 = x0+ y, byLU, write the result as splitting Sx1 = Tx0+ b, and

explain why T is extremely small. This single step bring almost close to x.

2. If A is orthonormal (unitary) matrix, show that jjAjj = 1 and also c(A) = 1: Orthog-
onal matrices and their multiples(�A) are the only perfectly conditioned matrices.

3. Find a vector x orthogonal to row space, and a vector y orthogonal to column space,

of

A =

264 1 2 1

2 4 3

3 6 4

375
4. Show that vector x� y is orthogonal to vector x+ y if and only if jjxjj = jjyjj:

5. For a positive de�nite matrix A, the Cholensky decomposition is A = L D LT = RRT

where R = LD1=2: Show that the condition number of R is square root of condition

number of A. It follows that Gaussian elimination needs no row exchanges for a positive

de�nite matrix; the condition number does not deteriorate, since c(A) = c(RT )c(R):

6. Show that for a positive de�nite symmetric matrix, the condition number can be ob-

tained as

c(A) = �max(A)=�min(A)
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7. Prove the following inequalities/ identities

kA+Bk � kAk+ kBk

kABk � kAk kBk

C(AB) � C(A)C(B)

kAk2 =
AT


2

8. Show that �max, or even max j�ij , is not a satisfactory norm of a matrix, by �nding

a 2� 2 counter examples to following inequalities

�max(A+B) � �max(A) + �max(B)

�max(AB) � �max(A)�max(B)

9. For the positive de�nite matrix

A =

"
2 �1
�1 2

#
compute the condition number C(A) and �nd the right hand side b of equationAx = b

and perturbation �b such that the error is worst possible, i.e.

k�xk
kxk = C(A)

k�bk
kbk

10. A polynomial

y = a0 + a1x+ a2x
2 + a3x

3

passes through point (3, 2), (4, 3), (5, 4) and (6, 6) in an x-y coordinate system. Setup

the system of equations and solve it for coe¢ cients a0 to a3 by Gaussian elimination.

The matrix in this example is (4 X 4 ) Vandermonde matrix. Larger matrices of this

type tend to become ill-conditioned.

11. Solve using Gauss Jordan method.

u+ v + w = �2

3u+ 3v � w = 6

u� v + w = �1

to obtain A�1. What coe¢ cient of v in the third equation, in place of present �1 ,
would make it impossible to proceed and force the elimination to break down?
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12. Decide whether vector b belongs to column space spanned by x(1);x(2); ::::

(a) x(1) = (1; 1; 0); x(2) = (2; 2; 1);x(3) = (0; 2; 0);b = (3:4:5)

(b) x(1) = (1; 2; 0); x(2) = (2; 5; 0);x(3) = (0; 0; 2);x(4) = (0; 0; 0); any b

13. Find dimension and construct a basis for the four fundamental subspaces associated

with each of the matrices.

A1 =

"
0 1 4 0

0 2 8 0

#
; U2 =

"
0 1 4 0

0 0 0 0

#

A2 =

264 0 1 0

0 0 1

0 0 0

375 ; A3 =

264 1 2 0 1

0 1 1 0

1 2 0 1

375 ; U1 =

264 1 2 0 1

0 1 1 0

1 2 0 1

375
14. Find a non -zero vector x� orthogonal to all rows of

A =

264 1 2 1

2 4 3

3 6 4

375
(In other words, �nd Null space of matrix A:) If such a vector exits, can you claim that

the matrix is singular? Using above A matrix �nd one possible solution x for Ax = b

when b = [ 4 9 13 ]T . Show that if vector x is a solution of the system Ax = b,

then (x+�x�) is also a solution for any scalar �, i.e.

A(x+ �x�) = b

Also, �nd dimensions of row space and column space of A.

15. If product of two matrices yields null matrix, i.e. AB = [0], show that column space

of B is contained in null space of A and the row space of A is in the left null space of

B.

16. Why there is no matrix whose row space and null space both contain the vector

x =
h
1 1 1

iT
17. Find a 1� 3 matrix whose null space consists of all vectors in R3 such that x1+2x2+

4x3 = 0: Find a 3� 3 matrix with same null space.
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18. If V is a subspace spanned by 264 11
0

375 ;
264 12
0

375 ;
264 15
0

375
�nd matrix A that has V as its row space and matrix B that has V as its null space.

19. Find basis for each of subspaces and rank of matrix A

(a)

A =

264 0 1 2 3 4

0 1 2 4 6

0 0 0 1 2

375 = LU =

264 1 0 0

1 1 0

0 1 1

375
264 0 1 2 3 4

0 0 0 1 2

0 0 0 0 0

375
(b)

A =

26664
1 0 0 0

2 1 0 0

2 1 1 0

3 2 4 1

37775
26664
1 2 0 1 2 1

0 0 2 2 0 0

0 0 0 0 0 1

0 0 0 0 0 0

37775
20. Consider the following system

A =

"
1 1

1 1 + "

#

Obtain A�1, det(A) and also solve for [x1 x2 ]T . Obtain numerical values for " = 0:01,

0:001 and 0:0001. See how sensitive is the solution to change in ".

21. Consider system

A =

264 1 1=2 1=3

1=2 1=3 1=4

1=3 1=4 1=5

375 ; b =

264 1�1
1

375
where A is Hilbert matrix with aij = 1=(i + j � 1); which is severely ill- conditioned.
Solve using

(a) Gauss-Jordan elimination

(b) exact computations

(c) rounding o¤ each number to 3 �gures.

Perform 4 iterations each by
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(a) Jacobi method

(b) Gauss- Seidel method

(c) Successive over-relaxation method with ! = 1:5

Use initial guess x(0) =
h
1 1 1

iT
and compare in each case how close to the x(4) is

to the exact solution. (Use 2-norm for comparison).

Analyze the convergence properties of the above three iterative processes using eigen-

values of the matrix (S�1T ) in each case. Which iteration will converge to the true

solution?

22. The Jacobi iteration for a general 2 by 2 matrix has

A =

"
a b

c d

#
; D =

"
a 0

0 d

#

If A is symmetric positive de�nite, �nd the eigenvalues of J = S�1T = D�1(D �A)
and show

that Jacobi iterations converge.

23. It is desired to solve Ax = b using Jacobi and Gauss-Seidel iteration scheme where

A =

264 4 2 1

1 5 3

2 4 7

375 ; A =

264 1 2 �2
1 1 1

2 2 1

375 ; A =

26664
�7 1 �2 3

1 8 1 3

�2 1 �5 1

1 0 �1 �3

37775
Will the Jacobi and Gauss-Seidel the iterations converge? Justify your answer. (Hint:

Check for diagonal dominance before proceeding to compute eigenvalues).

24. Given matrix

J =
1

2

26664
0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

37775
�nd powers J2; J3 by direct multiplications. For which matrix A is this a Jacobi

matrix J = I �D�1A ? Find eigenvalues of J .
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25. The tridiagonal n � n matrix A that appears when �nite di¤erence method is used

to solve second order PDE / ODE-BVP and the corresponding Jacobi matrix are as

follows

A =

26666664
2 �1 0 ::: 0

�1 2 �1 ::: 0

::: ::: ::: ::: :::

0 ::: �1 2 �1
0 ::: 0 1 2

37777775 ; J =
1

2

26666664
0 1 0 ::: 0

1 0 1 ::: 0

::: ::: ::: ::: :::

0 ::: 1 0 1

0 ::: 0 1 0

37777775
Show that the vector

x =
h
sin(�h) sin(2�h) ::: sin(nh)

iT
satis�es Jx = �x with eigenvalue � = cos(�h). Here, h = 1=(n + 1) and hence

sin [(n+ 1)�h] = 0.

Note: The other eigenvectors replace � by 2�, 3�,...., n�. The other eigenvalues

are cos(2�h), cos(3�h),...... , cos(n�h) all smaller than cos(�h) < 1.
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