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1 Introduction

A modern chemical plant consists of interconnected units such as heat exchangers, re-

actors, distillation columns, mixers etc. with high degree of integration to achieve energy

e¢ ciency. Design and operation of such complex plants is a challenging problem. Mathe-

matical modeling and simulation is a cost e¤ective method of designing or understanding
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behavior of these chemical plants when compared to study through experiments. Mathe-

matical modeling cannot substitute experimentation, however, it can be e¤ectively used to

plan the experiments or creating scenarios under di¤erent operating conditions. Thus, best

approach to solving most chemical engineering problems involves judicious combination of

mathematical modeling and carefully planned experiments.

To begin with, let us look at types of problems that can arise in context of modeling and

simulation. Consider a typical small chemical plant consisting of a reactor and a distillation

column, which is used to separate the product as overhead (see Figure 1). The reactants,

which are separated as bottom product of the distillation column, are recycled to the reactor.

We can identify following problems

� Process Design problem

Given: Desired product composition, raw material composition and availability.

� To Find: Raw material �ow rates, reactor volume and operating conditions (tem-

perature, pressure etc.), distillation column con�guration (feed locations and product

draws), reboiler,condenser sizes and operating conditions (recycle and re�ux �ows,

steam �ow rate, operating temperatures and pressure etc.)
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� Process Retro�tting: Improvements in the existing set-up or operating conditions

Plant may have been designed for certain production capacity and assuming certain

raw material quality. We are often required to assess whether

� Is it possible to operate the plant at a di¤erent production rate?

�What is the e¤ect of changes in raw material quality?

� Is it possible to make alternate arrangement of �ows to reduce energy consump-
tion?

� Dynamic behavior and operability analysis: Any plant is designed by assuming
certain ideal composition of raw material quality, temperature and operating tempera-

tures and pressures of utilities. In practice, however, it is impossible to maintain all the

operating conditions exactly at the nominal design conditions. Changes in atmospheric

conditions of �uctuations in steam header pressure, cooling water temperature, feed

quality �uctuations, fouling of catalysts, scaling of heat transfer surfaces etc. keep

perturbing the plant from the ideal operating condition. Thus, it becomes necessary

to understand transient behavior of the system in order to

� reject of e¤ects of disturbances on the key operating variables such as product
quality

� achieve transition from one operating point to an economically pro�table operat-
ing point.

� carry out safety and hazard analysis

In order to solve process design or retro�tting problems, mathematical models are de-

veloped for each unit operation starting from �rst principles. Such mechanistic (or �rst

principles) models in Chemical Engineering are combination of mass, energy and momen-

tum balances together with associated rate equations, equilibrium relation and equations of

state.

� Mass balances: overall, component.

� Rate equations: mass, heat and momentum transfer rates (constitutive equations.),

rate of chemical reactions

� Equilibrium principles : physical (between phases) and chemical (reaction rate
equilibrium).
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� Equations of state: primarily for problems involving gases.

From mathematical viewpoint, these models can be classi�ed into two broad classes

� Distributed parameter model: These models capture the relationship between the vari-
ables involved as functions of time and space.

� Lumped parameter models: These models lump all spatial variation and all the vari-
ables involved are treated as functions time alone.

The above two classes of models together with the various scenarios under consideration

give rise to di¤erent types of equation forms such as linear / nonlinear algebraic equations,

ordinary di¤erential equations or partial di¤erential equations. In order to provide motiva-

tion for studying these di¤erent kinds of equation forms, we present examples of di¤erent

models in chemical engineering and derive abstract equation forms in the following section.
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2 Mechanistic Models and Equation Forms

2.1 Linear Algebraic Equations

Plant wide or section wide mass balances are carried out at design stage or later during

operation for keeping material audit. These models are typical examples of systems of

simultaneous linear algebraic equations..

Example 1 Recovery of acetone from air -acetone mixture is achieved using an absorber and
a �ash separator (Figure 2). A model for this system is developed under following conditions

� All acetone is absorbed in water

� Air entering the absorber contains no water vapor

� Air leaving the absorber contains 3 mass % water vapor

The �ash separator acts as a single equilibrium stage such that acetone mass fraction in

vapor and liquid leaving the �ash separator is related by relation

y = 20:5x (1)

where y mass fraction of the acetone in the vapor stream and x mass fraction of the acetone

in the liquid stream. Operating conditions of the process are as follows

� Air in �ow: 600 lb/hr with 8 mass % acetone

� Water �ow rate: 500 lb/hr

It is required that the waste water should have acetone content of 3 mass % and we are

required to determine concentration of the acetone in the vapor stream and �ow rates of the

product streams.

Mass Balance:

0:92Ai = 0:97Ao (Air) (2)

0:08Ai = 0:03L+ y V (Acetone) (3)

W = 0:03Ao+ (1� y)V + 0:97L (Water) (4)

x = 0:03 (Design requirement) (5)

Equilibrium Relation:

y = 20:5x (6)

) y = 20:5� 0:03 = 0:615 (7)

5



Substituting for all the known values and rearranging, we have264 0:97 0 0

0 0:03 0:615

0:03 0:385 0:97

375
264 AoL
V

375 =
264 0:92� 6000:08� 600
500

375 (8)

The above model is a typical example of system of linear algebraic equations, which have

to be solved simultaneously. The above equation can be represented in abstract form set of

linear algebraic equations

Ax = b (9)

where x and b are a (n� 1) vectors (i.e. x;b 2 Rn) and A is a (n� n) matrix.

2.2 Nonlinear Algebraic Equations

Consider a stream of two components A and B at a high pressure Pf and temperature

Tf as shown in Figure 3. If the Pf is greater than the bubble point pressure at Tf , no vapor

will be present. The liquid stream passes through a restriction (valve) and is �ashed in

the drum, i.e. pressure is reduced from Pf to P . This abrupt expansion takes place under

constant enthalpy. If the pressure P in the �ash drum is less than the bubble point pressure
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Table 1: Flash vaporization Unit Example: k-values and compositions
Component zi ki

n-butane 0.25 2.13

n-pentane 0.45 1.10

n-hexane 0.30 0.59

of the liquid feed at Tf , the liquid will partially vaporize and two phases at the equilibrium

with each other will be present in the �ash drum. The equilibrium relationships are

� Temperature of the liquid phase = temperature of the vapor phase.

� Pressure of the liquid phase = pressure of the vapor phase.

� Chemical potential of the i0th component in the liquid phase = Chemical potential of
the i0th component in the vapor phase

Example 2 Consider �ash vaporization unit shown in Figure 4. A hydrocarbon mixture

containing 25 mole % of n butane, 45 mole %of n-hexane is to be separated in a simple

�ash vaporization process operated at 10 atm. and 2700F: The equilibrium k- values at this

composition are reported in Table 1. Let xi represent mole fraction of the component i
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in liquid phase and yi represent mole fraction of the component i in vapor phase. Model

equations for the �ash vaporizer are

� Equilibrium relationships

ki = yi=xi (i = 1; 2; 3) (10)

� Overall mass balance
F = L+ V (11)

� Component balance

ziF = xiL+ yiV (i = 1; 2; 3) (12)

= xiL+ kixiV (13)X
xi = 1 (14)

Note that this results in a set of simultaneous 5 nonlinear algebraic equa-

tions in 5 unknowns Equations (11-14) can be written in abstract form as follows

f1(x1; x2; x3; L; V ) = 0 (15)

f2(x1; x2; x3; L; V ) = 0 (16)

::::::::::::::::::: = 0

f5(x1; x2; x3; L; V ) = 0 (17)

which represent coupled nonlinear algebraic equations. These equations have to be

solved simultaneously to �nd solution vector

x =
h
x1 x2 x3 L V

iT
(18)

The above 5 equations can also be further simpli�ed as follows

xi = zi=

�
1 +

�
V

F

�
(ki � 1)

�
Using

P
xi = 1;we have

f (V=F ) =
X zi

1 + (V=F ) (ki� 1) � 1 = 0 (19)

In general, we encounter n nonlinear algebraic equations in n variables, which have to be

solved simultaneously. These can be expressed in the following abstract form

f1(x1; x2; x3;::::::xn) = 0 (20)

f2(x1; x2; x3;::::::xn) = 0

:::::::::::::::::::::: = 0 (21)

fn(x1; x2; x3;::::::xn) = 0 (22)
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Using vector notation, we can write

F (x) = 0 ; x 2 Rn (23)

x =
h
x1 x2 ::: xn

iT
where 0 represents n � 1 zero vector. Here F (x) 2 Rn represents n dimensional function
vector de�ned as

F (x) =
h
f1(x) f2(x) ::: fn(x)

iT
(24)

2.3 Optimization Based Formulations

Variety of modeling and design problems in chemical engineering are formulated as opti-

mization problems.

Example 3 Consider a simple reaction

A! B

modelled using the following reaction rate equation

�ra = �dCa=dt = ko(Ca)n exp(
�E
RT

) (25)
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Table 2: Reaction Rates at Di¤erent Temperaturtes and Concentrations in a batch experi-

ment
Reaction Rate Concentration Temperature

�ra1 Ca1 T1

�ra2 Ca2 T2

.... .... ....

�raN CaN TN

carried out in a batch reactor (see Figure 5). It is desired to �nd the kinetic parameters

ko; E and n from the experimental data. The data reported in Table 5 is collected from batch

experiments in a reactor at di¤erent temperatures

Substituting these values in the rate equation will give rise to N equations in three un-

knowns, which forms an overdetermined set equations. Due to experimental errors in the

measurements of temperature and reaction rate, it may not be possible to �nd a set of values

of {ko; E; n} such that the reaction rate equation is satis�ed at all the data points. However

one can decide to select {V o;E; n} such that the quantity

� =
NX
i=1

�
�rai � ko(Cai)n exp(

�E
RTi

)

�2
(26)

is minimized with respect to {ko; E; n}. Suppose we use �brai to denote the estimated reaction
rate

�brai = ko Cnai exp(
�E
R � Ti

) (27)

then, the problem is to choose parameters {ko; E; n} such that the sum of the square of errors

between the measured and estimated rates is minimum, i.e.

Min

ko; E; n
�(ko; E; n) =

NX
i=1

[�rai � (�brai)]2 (28)

Example 4 Cooling water is to be allocated to three distillation columns. Up to 8 million
liters per day are available, and any amount up to this limit may be used. The costs of

supplying water to each equipment are

Equip. 1: f1 = j1�D1j � 1 for 0 � D1 � 2
= 0 (otherwise)

Equip. 2: f2 = � exp(�12 (D2 � 5)2) for 0 � D2 � 1
Equip. 3: f3 = D2

3 � 6D3 + 8 for 0 � D3 � 4
Minimize � =

P
fi to �nd D1; D2; and D3
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Note that this is an example of a typical multi-dimensional optimization problem, which

can be expressed in abstract form
Min

x
�(x) (29)

where x 2 Rn and f(x) : Rn ! R is a scalar objective function. A general problem of this

type may include constraints on x or functions of x:

2.4 Ordinary Di¤erential Equations - Initial Value Problem (ODE-
IVP)

For most of the processing systems of interest to the chemical engineer, there are three

fundamental quantities :mass, energy and momentum. These quantities can be characterized

by variables such as density, concentration, temperature, pressure and �ow rate. These

characterizing variables are called as state of the processing system. The equations that

relate the state variables (dependent variables) to the independent variables are derived

from application of conservation principle on the fundamental quantities and are called the

state equations.

Let quantity S denote any one of the fundamental quantities
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� Total mass

� Mass of the individual components

� Total energy.

� Momentum

Then, the principles of the conservation of the quantity S states that:

Accumulation of S within a system
Time Period

=
Flow of S in the system

Time Period
� Flow of S out of the system

Time Period

+
Amount of S generated within the system

Time Period

�Amount of S consumed within the system
Time Period

Figure 6 shows schematic diagram of a general system and its interaction with external

world. Typical dynamic model equations are as follows:

Total Mass Balance

d(�V )

dt
=
X
i:inlet

�iFi �
X
j:outlet

�jFj

Mass Balance of the component A

dna
dt

=
d(CaV )

dt
=
X

CaiFi �
X

CajFi � rV (30)

Total energy Balance

dE

dt
=
d(U +K + P )

dt
=
X

�iFihi �
X

�jFjhj �Q�WS '
dH

dt

Variables and parameters appearing in these equations are are described in Table 3.

By convention, a quantity is considered positive if it �ows in and negative if it �ows out.

The state equations with the associated variables constitute a �lumped parameter mathe-

matical model�of a process, which yields the dynamic or static behavior of the process. The

application of the conservation principle stated above will yield a set of di¤erential equations

with the fundamental quantities as the dependent variables and time as independent vari-

able. The solution of the di¤erential equations will determine how the state variables change

with time i.e., it will determine the dynamic behavior of the process. The process is said to

be at the steady state if the state variables do not change with time. In this case, the rate

of accumulation of the fundamental quantity S is zero and the resulting balance yields a set

of algebraic equations
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Table 3: Description of Variables and Parameters
i inlet

j outlet

� Density of the material in the system

�i Density of the material in the i�th inlet stream

�j Density of the material in the j�th outlet stream

V Total volume of the system

Fi: Volumetric �ow rate of the i�th inlet stream

Fj: Volumetric �ow rate of the j�th outlet stream

na Number of moles of the component A in the system

CA Molal concentration ( moles /volume)of A in the system

CAi Molal concentration ( moles /volume)of A in the i�th inlet stream

CAj Molal concentration ( moles /volume)of A in the j�th outlet stream

r Reaction rate per unit volume of the component A in the system.

hi Speci�c enthalpy of the material in the i�th inlet stream

hi Speci�c enthalpy of the material in the j�th outlet stream

U;K; P Internal, kinetic and potential energies of the system, respectively.

Q Amount of the heat exchanged between the system and the surroundings per unit time

WS Shaft work exchanged between the system and its surroundings.
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Example 5 Stirred Tank Heater System (Figure 7): Total momentum of the system

remains constant and will not be considered. Total mass balance: Total mass in the tank at

any time t = �V = �Ah where A represents cross sectional area.

d (�Ah)

dt
= �Fi � �F (31)

Assuming that the density is independent of the temperature,

A
dh

dt
= Fi � F (32)

Now, �ow out due to the gravity is also a function of height

F = k
p
h

Thus,

A
dh

dt
+ k

p
h = Fi (33)

Total energy of liquid in the tank is given by

E = U +K + P

However, since tank does not move

dK

dt
=
dP

dt
= 0 ;

dE

dt
=
dU

dt
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For liquid systems
dU

dt
� dH

dt
(34)

where H is total enthalpy of the liquid in the tank.

H = �V Cp(T � Tref ) = �AhCp(T � Tref ) (35)

Tref represents reference temperature where the speci�c enthalpy of the liquid is assumed to

be zero. Now, using the energy conservation principle

d (�AhCp(T � Tref ))
dt

= �FiCp(Ti � Tref )� �FCp(T � Tref ) +Q (36)

where Q is the amount of heat supplied by the steam per unit time. Assuming Tref = 0, we

have

A
d(hT )

dt
= FiTi � FT +

Q

�Cp
(37)

A
d(hT )

dt
= Ah

dT

dt
+ AT

dh

dt

= Ah
dT

dt
+ T (Fi � F )

= FiTi � FT +
Q

�Cp

Or

Ah
dT

dt
= Fi(Ti � T ) +

Q

�Cp

Summarizing modelling steps

dh

dt
=

1

A
(Fi � F ) =

1

A
(Fi � k

p
h) (38)

dT

dt
=

Fi
Ah
(Ti � T ) +

Q

Ah�Cp
(39)

The associated variables can be classi�ed as

� state(or dependent) variables : h; T

� Input (or independent) variables :Ti; Fi; Q

� Parameters: A; �; Cp
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Steady state behavior can be computed by solving following two equations

dh

dt
= Fi � k

p
h = 0 (40)

dT

dt
=

Fi
Ah
(Ti � T ) +

Q

�Cp
= 0 (41)

Once we choose independent variables Fi = F i; Ti = T i and Q = Q, the steady state h = h

and T = T can be computed by simultaneously solving nonlinear algebraic equations (40-41).

The system will be disturbed from the steady state if the input variables suddenly

change value at t = 0. Consider following two situations in which we need to investigate

transient behavior of the above process

� Ti decreases by 10% from its steady state value T i at t = 0. Liquid level remains

at the same steady state value as Ti does not in�uence the total mass in tank. The

temperature T in the tank will start decreasing with time (see Figure 8). How T (t)

changes with time is determined by the solution of the equation (38) using the initial

as condition T (0) = T , the steady state value of T .

� Fi is decreased by 10% from its steady state value F i : Since Fi appears in both the dy-

namic equations, the temperature and the liquid level will start changing simultaneously

and the dynamics will be governed by simultaneous solution of coupled nonlinear dif-

ferential equations (38-39) starting with initial conditions T (0) = T ; h(0) = h: Figure

9 show schematic diagrams of the process responses for step change in Fi:

It is also possible to investigate response of the system for more complex inputs, such

as

Ti(t) = T i +�Ti sin(!t)

where above function captures daily variation of cooling water inlet temperature. In

each case, the transient behavior T (t) and h(t) is computed by solving the system of

ODEs subject to given initial conditions and time variation of independent inputs (i.e.

forcing functions).

Example 6 Three isothermal CSTRs in series: Consider three isothermal CSTRs in series
in which a �rst order liquid phase reaction of the form

A �! B

is carried out. It is assumed that volume and liquid density remains constant in each tank

and

V1
dCA1
dt

= F (CA0 � CA1)� kV1CA1 (42)
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V2
dCA2
dt

= F (CA1 � CA2)� kV2CA2 (43)

V3
dCA3
dt

= F (CA2 � CA3)� kV3CA3 (44)

De�ning � = F=V; we can re arrange the above set of equations as

d

dt

264 CA1CA2

CA3

375 =
264 �(k + 1=� 1) 0 0

1=� �(k + 1=� 2) 0

0 1=� �(k + 1=� 3)

375
264 CA1CA2

CA3

375+
264 1=� 10

0

375CA0 (45)
x = [CA1; CA2; CA3]

T

dx

dt
= Ax+BCA0

(46)

where matrices A and B are de�ned in the above equation. Now, suppose initially CA0 = �CA0;

till t = 0, and, for t � 0, CA0 was changed to CA0 = 0. Then we are required to solve

dx

dt
= Ax; x = x(0) at t = 0 (47)

and generate trajectories x(t) ( i.e. CA1(t); CA2(t) and CA3(t)) over interval [0; tf ]: This is

a typical problem of dynamic simulation of lumped parameter system.

Example 7 Continuous Fermenter: Consider a continuously operated fermenter de-
scribed by the following set of ODEs

dX

dt
= F1(X;S; P; D; Sf ) = �DX + �X (48)

dS

dt
= F2(X;S; P; D; Sf ) = D(Sf � S)�

1

YX=S
�X (49)

dP

dt
= F3(X;S; P; D; Sf ) = �DP + (��+ �)X (50)

where X represents e uent cell-mass or biomass concentration, S represents substrate con-

centration and P denotes product concentration. It is assumed that product concentration

(S) and the cell-mass concentration (X) are measured process outputs while dilution rate

(D) and the feed substrate concentration (Sf ) are process inputs which can be manipulated.

Model parameter � represents the speci�c growth rate, YX=S represents the cell-mass yield, �

and � are the yield parameters for the product. The speci�c growth rate model is allowed to

exhibit both substrate and product inhibition:

� =
�m(1�

P

Pm
)S

Km + S +
S2

Ki

(51)
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where �m represents maximum speci�c growth rate, Pm represents product saturation constant;

Km substrate saturation constant and the Ki represents substrate inhibition constant: De�n-

ing state and input vectors as

x =
h
X S P

iT
; u =

h
D Sf

iT
(52)

the above equation can be represented as

dx

dt
= F (x;u) (53)

A typical problem dynamic simulation problem is to �nd trajectories of product, biomass and

substrate concentrations over an interval [0; tf ]; given their initial values and dilution rate

D(t) and feed substrate concentration Sf as a function of time over [0; tf ].

In abstract terms, the dynamic simulation problem can be states as follows. Given time

trajectories of independent variables fu(t) : 0 � t � tfg;and initial state, x(0), of the system,
obtain state trajectories fx(t) : 0 � t � tfg by integrating

dx

dt
= F [x(t);u(t)] ; x = x(0) at t = 0 (54)

where x 2 Rn represents dependent or state variables and u 2 Rm denote independent

inputs. As the independent variable trajectories are known a-priori while solving ODE-IVP,

the problem can be looked at as n-ODE�s in n variables with variable coe¢ cients. Thus, the

above problem can be re-stated as

dx

dt
= Fu(x; t) ; x(0) = x0 (55)

In other words, a forced dynamic systems can be looked upon as unforced systems with

variable parameters.

The model we considered above did not contain variation of the variables with respect to

space. Such models are called as �Lumped parameter models�and are described by ordinary

di¤erential equations of the form

dx1
dt

= f1 (x1(t); x2(t); :::; xn(t); u1(t); u2(t); :::; um(t)) (56)

::::::::::::::::::::::::::::::::::::::::::::::::::::
dxn
dt

= fn (x1(t); x2(t); ::::; xn(t); u1(t); u2(t); :::; um(t)) (57)

x1(0) = x1; ::::; xn(0) = xn (Initial conditions)
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where x1;::::; xn denote the state (or dependent) variables and u1(t); ::; un(t) are denote in-

dependent inputs (or forcing functions) speci�ed for t � 0. Using vector notation, we can

write the above set of ODEs in more compact form

dx

dt
= F (x;u) (58)

x(0) = x0 (59)

where

x(t) = [x1(t):::::xn(t)]
T 2 Rn (60)

u(t) = [u1(t):::::un(t)]
T 2 Rm (61)

F (x;u) = [f1(x;u)::::::::fn(x;u)]
T 2 Rn (62)

and u(t) is a forcing function vector de�ned over t �= 0:

� Steady State Simulation Problem: If we �x independent inputs to some constant value,
say u(t) = u for t � 0;then we can �nd a steady state solution x = x corresponding
to these constant inputs by simultaneously solving n nonlinear algebraic equations

F (x;u) = 0 (63)

obtained by setting dx=dt = 0 where 0 represents n� 1 zero vector.

� Dynamic Simulation Problem: Given input trajectories

u(t) = [u1(t) u2(t)::::::::::um(t)]
T (64)

as a function of time for t � 0 and with the initial state x(0); integrate

dx

dt
= F (x;u(t)) (65)

over interval 0 � t � tf to determine state trajectories

x(t) = [x1(t) x2(t)::::::::::xn(t)]
T (66)

Since u(t) is a known function of time, we re-state the above problem as

dx

dt
= Fu(x; t) ; x(0) = x0 (67)

Fu(x; t) (= F (x;u(t))) denotes F () with the given u(t):
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Table 4: pH Balance Problem: Parameters and Initial Conditions
Parameter Value

Equilibrium constant for water Kw 10�14

Relative strength of acid mixture in the CSTR Ka 0.001

Feed rate to the tank F 13 L/min

Flow rate of the base m 15 L/min

Concentration of the base solution Cr 1 equiv/L

Concentration of the acid and its salts U 0.13 mol/L

Volume of tank V 90 L

Variable Initial Value

N+ 0.005

H+ 0.086

N̂+ 0.01

Ĥ+ 0.0068

3 Di¤erential Algebraic Equations

Another important class of problems that arise in process engineering is a set of coupled

di¤erential algebraic equations. In this section, we discuss two examples belonging to this

class.

Example 8 The process is a continuously stirred tank reactor, where a feed with unknown
pH is �owing into the reactor. We add a basic solution, with known molarity, to the reactor

to maintain the pH at a desired level. The �ow-rate of the basic solution is the manipulated

variable. The process is modelled using the following set of DAEs:-

V dN+

dt
= m� Cr � (F +m)N+ (68)

[H+]3 + (Ka+N+)[H+]2+ (69)

(N+Ka�Kw�KaU)H+ �KaKw = 0

where N+is the concentration of the cation of the base in the CSTR and is the di¤erential

state, while hydrogen ion concentration, (H+), is the algebraic state. The parameters and

initial conditions are summarized in Table 4.

Example 9 The system presented here models the galvanostatic charge process of a thin

�lm nickel hydroxide electrode. The rate of change of the mole fraction of nickel hydroxide
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is (y1) given by
�V

W

dy1
dt

=
j1
F

(70)

j1 + j2 � iapp = 0 (71)

where

j1 = io1[2(1� y1) exp(
0:5F

RT
(y2 � �eq;1))� 2y1 (72)

� exp(�0:5F
RT

(y2 � �eq;1))]

j2 = io2[exp(
F

RT
(y2 � �eq;2))� exp(

�F
RT

(y2 � �eq;2))] (73)

where y2 is the potential di¤erence at the solid liquid interface. (70) is the species balance

while (71) denotes the charge balance. j1 and j2 are derived from Butler-Volmer kinetics.

The parameters and initial condition values are summarized in Table 5.

Table 5: Ni-H electrode problem: Parameters and Initial Conditions
Parameter Value

Faraday�s Constant F 96487 C/mol

Ideal Gas Constant R 8.314 J/molK

Temperature T 298.15 K

equilibrium potential for nickel reaction �eq;1 0.420 V

equilibrium potential for oxygen reaction �eq;2 0.303 V

Density of nickel � 3.4g/cm3

Molecular Weight W 92.7 g/mol

e¤ective length V 1� 10�5 cm
applied current density on nickel electrode iapp 1� 10�5A=cm2

exchange current density of nickel reaction io1 1� 10�4A=cm2

exchange current density of oxygen reaction io2 1� 10�8A=cm2

Variable Initial Value

y1 0.35024

y2 0.4074

ŷ1 0.5322

ŷ2 0.4254

A general nonlinear DAE system of equations, which are often encountered in process

applications, can be described by the following general form of coupled di¤erential and
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algebraic equations

dx(t)

dt
= f(x; z;u)

g(x;z;u) = 0

(74)

x 2 Rnd are the di¤erential states of the process, z 2 Rna are the algebraic states of the
process and u 2 Ru are the input variables. It is important to note that the initial condition,
x(0) = x0; in this case has to be consistent with z(0) = z0; such that the algebraic constraints

are satis�ed

g(x0; z0;u(0)) = 0

This class of problems need separate treatment while developing numerical solution schemes.

3.1 Partial Di¤erential Equations (PDEs) and ODE-Boundary value
Problems (ODE-BVP)

Most of the systems encountered in chemical engineering are distributed parameter systems.

Even though behavior of some of these systems can be adequately represented by lumped

parameter models, such simplifying assumptions may fail to provide accurate picture of

system behavior in many situations and variations of variables along time and space have to

be considered while modeling. This typically results in a set of partial di¤erential equations.

Example 10 Consider the double pipe heat exchanger in which a liquid �owing in the inner
tube is heated by steam �owing countercurrently around the tube (Figure 10). The temperature

in the pipe changes not only with time but also along the axial direction z. While developing

the model, it is assumed that the temperature does not change along the radius of the pipe.

Consequently , we have only two independent variables, i.e. z and t. To perform the energy

balance,we consider an element of length �z as shown in the �gure. For this element, over

a period of time �t

�CpA�z[(T )t+�t � (T )t] = �CpV A(T )z�t� �CpV A(T )z+�z�t+Q�t(�D�z) (75)

This equation can be explained as

[accumulation of the enthalpy during the time period �t]

= [�ow in of the enthalpy during �t] - [�ow out of the enthalpy during �t]

[enthalpy transferred from steam to the liquid through wall during �t]

where

Q : amount of heat transferred from the steam to the liquid per unit time and per unit

heat transfer area.
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A : cross section area of the inner tube.

V : average velocity of the liquid(assumed constant).

D : external diameter of the inner tube.

Dividing both the sides by (�z�t) and taking limit as �t! 0 and �z ! 0, we have

�CpA
@T (z; t)

@t
= ��CpV A

@T (z; t)

@z
+ �DQ (76)

Q = U [Tst � T ] (77)

Boundary conditions:

T (t; z = 0) = T1fort � 0

Initial condition

T (t = 0; z) = T0 (0; z) (78)

Steady State Simulation: Find T (z) given T (z = 0) = T1 when @T=@t = 0; i.e. solve for

�CpV A
@T

@z
= �DQ = �DQU(Tst � T ) (79)

T (0) = T1 (80)

This results in a ODE-IVP, which can be solved to obtain steady state pro�les T (z) for

speci�ed heat load and liquid velocity.
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Dynamic Simulation

�CpA
@T

@t
= ��CpV A

@T

@z
+ �DQ (81)

with

T (t; 0) = T1at z = 0 and t � 0 : Boundary condition (82)

T (0; z) = T0(z) : Initial temperature pro�le (83)

This results in a Partial Di¤erential Equation (PDE) model for the distributed parameter

system.

Example 11 Now, let us consider the situation where the some hot liquid is used on the
shell side to heat the tube side �uid (see Figure 11). The model equations for this case can

be stated as

�tCptAt
@Tt(z; t)

@t
= ��tCptVtAt

@Tt(z; t)

@z
+ �DQ(z; t) (84)

�sCptAs
@Ts(z; t)

@t
= �sCpsVsAs

@Ts(z; t)

@z
� �DQ(z; t) (85)

Q(z; t) = U [Ts(z; t)� Tt(z; t)] (86)

where subscript t denotes tube side and subscript s denotes shell side. The initial and bound-

ary conditions become

Tt(t; 0) = Tt0 at z = 0 and t � 0 : Boundary condition (87)

T (0; z) = Tt0(z) : Initial temperature pro�le (88)
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Ts(t; 1) = Ts1at z = 1 and t � 0 : Boundary condition (89)

T (0; z) = Ts0(z) : Initial temperature pro�le (90)

These are coupled PDEs and have to be solved simultaneously to understand the transient

behavior. The steady state problem can be stated as

�tCptVtAt
dTt(z; t)

dz
= �DU [Ts(z)� Tt(z)] (91)

�sCpsVsAs
dTs(z; t)

dz
= �DU [Ts(z)� Tt(z)] (92)

Tt(0) = Tt0 at z = 0 (93)

Ts(1) = Ts1 at z = 1 (94)

Equations (91-92) represent coupled ordinary di¤erential equations. The need to compute

steady state pro�les for the counter-current double pipe heat exchanger results in a boundary

value problem (ODE-BVP) as one variable is speci�ed at z = 0 while the other is speci�ed

at z = 1:

Before we conclude this section, we brie�y review some terminology associated with

PDEs, which will be used in the later modules.

De�nition 12 Order of PDE: Order of a PDE is highest order of derivative occurring in
PDE.

De�nition 13 Degree of PDE: Power to which highest order derivative is raised.

Example 14 Consider PDE

@u=@t+ (d2u=dz2)n = u3 (95)

Here, the Oredr = 2 and Degree = n: Solutions of PDEs are sought such that it is

satis�ed in the domain and on the boundaries. A problem is said to be well posed when the

solution is uniquely determined and it is su¢ ciently smooth and di¤erentiable function of the

independent variables. The boundary conditions have to be consistent with one another in

order for a problem to be well posed. This implies that at the points common to boundaries,

the conditions should not violet each other.

A linear PDE can be classi�ed as:

� Homogeneous equations:Di¤erential equation that does not contain any terms other
than dependent variables and their derivatives.
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@u=@t = @u2=@x2 (96)

@2u=@x2 + @2u=@y2 = 0

� Non homogeneous equations: Contain terms other than dependent variables

@u=@t = @2u=@x2 + sinx (97)

@2u=@x2 + @2u=@y2 = sinx sin y (98)

Similarly, the boundary conditions can be homogeneous or non homogeneous depending

on whether they contain terms independent of dependent variables.

The PDEs typically encountered in engineering applications are 2ndorder PDEs (reaction-

di¤usion systems, heat transfer, �uid-�ow etc.)

Classi�cation of 2nd order PDEs:

Consider a 2ndorder PDE in n independent variables (x1; x2; x3; x4) = (x; y; z; t). This

can be written as

4X
i=1

4X
j=1

aij
@2u

@xi@xj
= f [@u=@x1; :::; @u=@x4; ; u; x1; ::::; x4] (99)

aij are assumed to be independent of 0u0and its derivative. They can be functions of (xi).

aij can always be written as aij = aji for i 6= j as

@2u

@xi@xj
=

@2u

@xj@xi
(100)

Thus, aijare elements of a real symmetric matrix A. Obviously A has real eigen values. The

PDE is called

� Elliptic: if all eigenvalues are +ve or-ve.

� Hyperbolic: if some eigenvalues are +ve and rest are -ve.

� Parabolic: if at-least one eigen value is zero.
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The classi�cation is global if aij are independent of xi, else it is local. Typical partial

di¤erential equations we come across in engineering applications are of the form

r2u = a
@u

@t
+ b

@2u

@t2
+ cu+ f(x1; x2; x3; t) (101)

subject to appropriate boundary conditions and initial conditions. This PDE is solved in a

three dimensional region V , which can be bounded or unbounded. The boundary of V is

denoted by S: On the spatial surface S; we have boundary conditions of the form

(�(s; t) bn) :ru+ �(s; t)u = h(s; t) (102)

where bn is the outward normal direction to S and s represents spatial coordinate along S:
We can classify the PDEs as follows

� Elliptic: a = b = 0

� Parabolic: a 6= 0; b = 0

� Hyperbolic: b > 0

Elliptic Problems typically arise while studying steady-state behavior of di¤usive sys-

tems. Parabolic or hyperbolic problems typically arise when studying transient behavior of

di¤usive systems.

4 Summary

This module introduces di¤erent basic forms of equations through examples of steady state

and dynamic models of simple unit operations in chemical processing. The following abstract

equation forms / formulations have been identi�ed

� Linear algebraic equations

� Nonlinear algebraic equations

� Optimization based estimation / formulations

� Ordinary Di¤erential Equations : Initial Value Problem (ODE-IVP)

� Di¤erential Algebraic Equations (DAE)

� Ordinary Di¤erential Equations : Boundary Value Problem (ODE-BVP)
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� Partial Di¤erential Equations (PDEs)

Methods for dealing with numerical solutions of these abstract equation forms / formu-

lations will be discussed in the subsequent modules.
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