1. Thermal conductivity in the American Engineering system of units is:

$$
k=\frac{B t u}{(h)\left(f t^{2}\right)\left({ }^{o} F / f t\right)}
$$

Change this to:

$$
k=\frac{k J}{(\text { day })\left(m^{2}\right)\left({ }^{\circ} \mathrm{C} / \mathrm{cm}\right)}
$$

Btu $=$ British thermal unit, and 1 Btu $=252 \mathrm{cal}$
2. The power required to run a pump is obtained by multiplying the pressure difference between outlet and inlet of the pump with volumetric flow rate

$$
P=\Delta p Q
$$

P is power, Δp is pressure difference and Q is flow rate. Specify the units of the variables in SI system for the above equation to be dimensionally homogeneous. Calculate P in hp (horse power) if Δp is 50 psi and Q is $35 \mathrm{t}^{3} / \mathrm{min}$. Note 746W = 1hp.
3. Complete problem 3 of tutorial 1.
4. Convert the following:
a) 2 lb of acetic acid to g mol
b) 100 g of nitrogen to lb mol
c) 10 kg of water to g mol
d) 50 lb of air to kmol
5. Convert the following:
a) $10^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{R}$
b) $500^{\circ} \mathrm{R}$ to K
c) $212^{\circ} \mathrm{F}$ to K
6. How many significant figures would the solution of each of the following problems have? What are the solutions? (Read handout 1 on the course webpage)
a) $\left(1.76 \times 10^{4}\right)\left(0.12 \times 10^{-6}\right)$
b) $18.76-7$

