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Multiplying both sides of Eq. 6.81 by v(n−2), taking expectation and substituting
for γvξ(0),

γvv(2) = c2γvξ(0) = c2σ
2
ξ

Now, we are in a position to calculate the scaled ACF:

ρvv(2) =
γvv(2)
γvv(0)

=
c2

1 + c2
1 + c2

2

ρvv(1) =
γvv(1)
γvv(0)

=
c1(1 + c2)
1 + c2

1 + c2
2

Given experimental data, we can calculate the scaled ACF, using a procedure, such
as the one given in Example 6.67. We can then solve the above two equations
simultaneously for c1 and c2.

6.4.4 Condition for Unique Estimation

We would like to address the question of whether we can always determine the model
parameters of an MA process from the experimental data, as explained in the previous
section. The MA process, given by Eq. 6.68 implies,

v(n) = c(n) ∗ ξ(n)

where, c(n) is the inverse Z-transform of C(z) and ξ(n) is the white noise of variance
1. We also obtain,

v(−n) = c(−n) ∗ ξ(−n)

Convolving the expressions for v(n) and v(−n) and using the commutativity property
of convolution, we obtain,

v(n) ∗ v(−n) = c(n) ∗ c(−n) ∗ ξ(n) ∗ ξ(−n)

Using the definition of auto covariance, as given by Eq. 6.60, we obtain,

γvv(n) = c(n) ∗ c(−n) ∗ γξξ(n)

Taking Z-transform of both sides, we obtain,

Φyy(z) = C(z)C(z−1) (6.82)

where, we have used the fact that γξξ(n) = δ(n) from Eq. 6.36 on page 154, for white
noise of variance 1. We have also made use of the result of Sec. 4.2.8 to arrive at
C(z−1). The power of z−1 as an argument of C indicates that we have to replace the
occurrences of z in C(z) with z−1.

Because the zeros of C(z) are reciprocals of the corresponding zeros of C(z−1), we
should expect a loss in uniqueness. We illustrate this idea with a simple example.
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Example 6.13 Study the autocorrelation function of two noise processes v1(n)
and v2(n), modelled as,

v1(n) = ξ(n) + c1ξ(n− 1) = (1 + c1z
−1)ξ(n)

v2(n) = ξ(n) + c−1
1 ξ(n− 1) = (1 + c−1

1 z−1)ξ(n)

where, we have used the mixed notation of Sec. 6.4.1. Using Eq. 6.82, we obtain
the spectrum of v2 as

Φv2v2 = (1 + c−1
1 z−1)(1 + c−1

1 z)

In a similar way, the spectrum of v1 is

Φv1v1 = (1 + c1z
−1)(1 + c1z)

Pulling out c1z
−1 and c1z, respectively, from the first and second terms of the

right hand side, we obtain

Φv1v1 = c1z
−1(c−1

1 z + 1)c1z(c−1
1 z−1 + 1)

Comparing this with the expression for Φv2v2 , we obtain,

Φv1v1 = c2
1Φv2v2

It is clear that the autocorrelation of v1 and v2 are identical, i.e.,

ρv1v1(i) = ρv2v2(i), ∀i

because, scaling results in removal of constant factors - see the definition of ACF
in Eq. 6.28 on page 152. As a result, given the autocorrelation function, it is not
possible to say whether the underlying noise process is v1 or v2.

In the above example, if c1 lies outside it, c−1
1 will lie inside the unit circle. Because

we can’t say which one has given rise to ACF, by convention, we choose the zeros that
are inside the unit circle. Although this discussion used a first degree polynomial C,
it holds good even if the degree is higher. We illustrate these ideas with a Matlab
based example.

Example 6.14 The MA(2) process described by

v1(n) = ξ(n)− 3ξ(n− 1) + 1.25ξ(n− 2) = (1− 3z−1 + 1.25z−2)ξ(n)

= (1− 0.5z−1)(1− 2.5z−1)ξ(n)

is used to generate data as in M 6.7. The same code determines the model
parameters. We obtain the following model:
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Discrete-time IDPOLY model: v(t) = C(q)e(t)
C(q) = 1 - 0.8923 (+-0.009942) q^-1 + 0.1926 (+-0.009935) q^-2

Note that the identified model parameters are different from the ones used to
generate the data. Observe also that one of the zeros lies outside the unit circle.
We repeat this exercise with the process described by,

v2(n) = ξ(n)− 0.9ξ(n− 1) + 0.2ξ(n− 2) = (1− 0.9z−1 + 0.2z−2)ξ(n)

= (1− 0.5z−1)(1− 0.4z−1)ξ(n)

Note this process is identical to v1, but for the zero outside the unit circle (2.5)
being replaced by its reciprocal (0.4). M 6.7 generates data for this model as well,
and estimates the parameters. We obtain the following result:

Discrete-time IDPOLY model: v(t) = C(q)e(t) \
C(q) = 1 - 0.8912 (+-0.009939) q^-1 + 0.1927 (+-0.009935) q^-2

Observe that Matlab estimates the parameters correctly this time.

We emphasize that the zeros of the identified polynomial will be inside the unit circle.
From this section, we conclude that ACF can be used as an effective tool to

determine the order of MA processes. We will now devote our attention to AR
processes.

6.4.5 Determination of Order of AR Processes

In this section, we will present a method to determine the order of AR processes. Let
us first explore whether it is possible to do this through ACF. We will begin with a
simple example.

Example 6.15 Calculate the ACF of AR(1) process:

v(n) + a1v(n− 1) = ξ(n)

Multiplying both sides of this equation successively by v(n − 1), v(n − 2), . . .,
v(n− l) and taking expectation, we obtain,

γvv(1) + a1γvv(0) = 0
γvv(2) + a1γvv(1) = 0

...

γvv(l) + a1γvv(l − 1) = 0

where, the right hand side of every equation is zero, because of the causality
condition, given by Eq. 6.33 on page 154. Starting from the last equation and
recursively working upwards, we obtain,

γvv(l) = −a1γvv(l − 1) = −a1(−a1γvv(l − 2)) = a2
1γvv(l − 2)

= · · · = (−1)lalγvv(0)


