
1. State Space Models

• Model is of the form ẋ = Fx(t) + Gu(t)

• x state

– denotes variables that characterize the state of the system

– knowing the state, know everything about the system

• u(t) denotes the input to the system:

– disturbance variable

– manipulated or control variable

• In the flow system,

– Inflow rate Fi is the disturbance variable

– We could use the valve position (see the problem) as the manipulated

variable or control effort
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2. Constant Square Matrix - Exponential & Derivative
Need this to derive discrete models. Define

eFt 4= I + Ft +
1

2!
F 2t2 +

1

3!
F 3t3 + . . .

Example:

F =

[
0 1

0 −1

]

F 2 =

[
0 1

0 −1

] [
0 1

0 −1

]
=

[
0 −1

0 1

]

F 3 =

[
0 1

0 −1

] [
0 −1

0 1

]
=

[
0 1

0 −1

]

eFt =

[
1 0

0 1

]
+

[
0 t

0 −t

]
+

1

2

[
0 −t2

0 t2

]

+
1

3!

[
0 t3

0 −t3

]
+ · · ·

=

[
1 t− t2

2 + t3

3! + · · ·
0 1− t + t2

2 −
t3

3! + · · ·

]

=

[
1 1− e−t

0 e−t

]
Differentiate both sides:

d

dt

(
eFt

)
=

d

dt

(
I + Ft +

1

2!
F 2t2 +

1

3!
F 3t3 + . . .

)
= 0 + F +

1

2!
F 22t +

1

3!
F 33t2 + . . .

= F + F 2t +
1

2!
F 3t2 + . . .

= (I + Ft +
1

2!
F 2t2 + . . .)F = eFtF

In summary,

d

dt
(eFt) = eFtF
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3. Solution to State Space Model

Recall

eFt 4= I + Ft +
1

2!
F 2t2 + . . .

d

dt
(eFt) = eFtF

Want to solve

ẋ(t) = Fx(t) + Gu(t)

Write this as follows:

ẋ(t)− Fx(t) = Gu(t)

Premultiply both sides by e−Ft to get

e−Ftẋ(t)− e−FtFx(t) = e−FtGu(t)

This can be written as

d

dt
(e−Ftx(t)) = e−FtGu(t)

Integrating both sides with respect to time
from t0 to t, we get

e−Ftx(t)− e−Ft0x(t0) =

∫ t

t0

e−FτGu(τ)dτ

e−Ftx(t) = e−Ft0x(t0) +

∫ t

t0

e−FτGu(τ)dτ

Premultiply by eFt:

x(t) = eF (t−t0)x(t0) +

∫ t

t0

eF (t−τ)Gu(τ)dτ

Interested in sampling instants only. Substi-
tute (tn, tn+1) for (t0, t).

x(tn+1) = eF (tn+1−tn)x(tn)

+

∫ tn+1

tn

eF (tn+1−τ)Gu(τ)dτ
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4. ZOH Equivalent of State Space Model

State space model:

ẋ(t) = Fx(t) + Gu(t)

y(t) = Cx(t) + Du(t)

Recall solution to first equation:

x(tn+1) = eF (tn+1−tn)x(tn) +

∫ tn+1

tn

eF (tn+1−τ)Gu(τ)dτ

Assumption: piecewise constant u is used, i.e.,

u(τ) = u(tn), tn ≤ τ < tn+1

We will use only uniform sampling period of Ts:

Ts
4
= tn+1 − tn

Solution to state space equation becomes,

x(tn+1) = eFTsx(tn) +

[∫ tn+1

tn

eF (tn+1−τ)Gdτ

]
u(tn)

Define

A
4
= eFTs

B
4
=

∫ tn+1

tn

eF (tn+1−τ)Gdτ.

=

[∫ Ts

0
eFτdτ

]
G (Problem)

A and B are constants.

x(tn+1) = Ax(tn) + Bu(tn)

Constant Ts ⇒ use sampling No.:

x(n + 1) = Ax(n) + Bu(n)

Synchronize the sampling of y(t)
with that of x(t) and u(t):

x(n + 1) = Ax(n) + Bu(n)

y(n) = Cx(n) + Du(n)
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5. Example

ẋ(t) = Fx(t) + Gu(t)

y(t) = Cx(t) + Du(t)

A = eFTs

B =

[∫ Ts

0
eFτdτ

]
G

x(n + 1) = Ax(n) + Bu(n)

y(n) = Cx(n) + Du(n)

Example: Calculate the ZOH equivalent of
the continuous system with Ts = 1 second

d

dt

[
x1

x2

]
=

[
0 1
0 −1

] [
x1

x2

]
+

[
0
1

]
u(t)

y(t) =
[
1 0

] [
x1

x2

]
F =

[
0 1
0 −1

]
, G =

[
0
1

]
eFt =

[
1 1− e−t

0 e−t

]

A = eFTs =

[
1 1− e−1

0 e−1

]
=

[
1 0.632
0 0.368

]
Done three slides ago.

B =

∫ 1

0
eFτdτG

=

∫ 1

0

[
1 1− e−τ

0 e−τ

]
dτ

[
0
1

]
=

[
τ τ + e−τ

0 −e−τ

]1

0

[
0
1

]
=

[
τ + e−τ

−e−τ

]1

0
=

[
1 + e−1 − 1
−e−1 + 1

]
=

[
0.368
0.632

]
Matlab Code:

1 F = [−1 0 ;1 0 ] ; G = [ 1 ; 0 ] ;
2 C = [0 1 ] ; D = 0 ; Ts=1;
3 s y s = s s (F ,G,C ,D) ;
4 s y sd = c2d ( sys , Ts , ’ zoh ’ )
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6. ZOH Equivalent of System with Delay

Consider the model

ẋ(t) = Fx(t) + Gu(t−D),

0 ≤ D < Ts

Would like to arrive at

x(n + 1) = Ax(n) + Bu(n),

the standard form.

Draw a typical u profile:

D

u(t)

u(t− D)

t
n

t
n+1

The solution of this becomes

x(tn+1) = eF (tn+1−tn)x(tn) +

∫ tn+1

tn

eF (tn+1−τ)Gu(τ −D)dτ

u(τ −D) - piecewise constant. Split the last term:∫ tn+1

tn

eF (tn+1−τ)Gu(τ −D)dτ =

∫ tn+D

tn

eF (tn+1−τ)Gdτu(tn−1)

+

∫ tn+1

tn+D

eF (tn+1−τ)Gdτu(tn)

= B1u(tn−1) + B0u(tn)

Solution becomes

x(n + 1) = Ax(n) + B1u(n− 1) + B0u(n)

Can be written using an augmented state vector:[
x(n + 1)

u(n)

]
=

[
A B1

0 0

] [
x(n)

u(n− 1)

]
+

[
B0

I

]
u(n)

In standard form. I is an identity matrix, same size as u.
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7. Output

• It may not be possible to mea-

sure all the components of state

– Expensive: measuring tem-

perature in all trays of a tall

distillation column.

– There may not be sensors:

eg. rate of change of viscos-

ity.

• Only a subset/function of the

state vector is often measured

Example: x =

[
x1

x2

]
,

x1 - height of liquid 1,

x2 - height of liquid 2

• Measure only level 2:

y =
[
0 1

] [
x1

x2

]
= x2

• Measure total level:

y =
[
1 1

] [
x1

x2

]
= x1 + x2

• Modelled as

y = Cx + Du

CL 692 Digital Control, IIT Bombay 7 c©Kannan M. Moudgalya, Autumn 2006

8. Putting all together

Controller Plant

v

u

−

e yr

• e is converted to digital signal using A/D converter

• u is made useful to real life system with D/A converter and ZOH

• Now, every block communicates with each other

• Plant model: x(n + 1) = Ax(n) + Bu(n), y(n) = Cx(n) + Du(n)

• Can convert this into transfer function to be taught

• Can also use state space approach, to be taught

• In any case, controller can understand the plant!

• How does controller work? What about intra sample behaviour?

• Can take care of it - will study. Use simulations to verify
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