
1. A Procedure to Determine Impulse Response Coefficients
Consider an LTI system, ξ(k) is white noise, u and ξ uncorrelated, i.e., ruξ(k) = 0:

y(k) =
N∑

l=0

g(l)u(k − l) + ξ(k)

Multiplying both sides by u(k − τ) and summing for all k values over [0, N ],

N∑
k=0

y(k)u(k − τ) =
N∑

k=0

N∑
l=0

g(l)u(k − l)u(k − τ)

As u and ξ are uncorrelated, the second term on the right hand side is zero. We arrive at

ryu(τ) =
N∑

l=0

g(l)ruu(τ − l)

Evaluating this equation for different τ , and making use of ruu(n) = ruu(−n), ruu(0) · · · ruu(N)
ruu(−1) · · · ruu(N − 1)

...
ruu(−N) · · · ruu(0)


 g(0)

g(1)
...

g(N)

 =

 ryu(0)
ryu(1)

...
ryu(N)

 .

Solve for g. Invertibility of this matrix is the persistence of excitation condition of u.

CL 692 Digital Control, IIT Bombay 1 c©Kannan M. Moudgalya, Autumn 2006

2. A Procedure to Determine Impulse Response Coefficients
ruu(0) · · · ruu(N)

ruu(−1) · · · ruu(N − 1)
...

ruu(−N) · · · ruu(0)




g(0)
g(1)

...
g(N)

 =


ryu(0)
ryu(1)

...
ryu(N)


3 Unknowns:

ruu(0) ruu(1) ruu(2)
ruu(1) ruu(0) ruu(1)
ruu(2) ruu(1) ruu(0)

g(0)
g(1)
g(2)

 =

ryu(0)
ryu(1)
ryu(2)


Recall the convolution model: y(k) =

N∑
l=0

g(l)u(k − l) + ξ(k) u(k) u(k − 1) u(k − 2)
u(k + 1) u(k) u(k + 1)
u(k + 2) u(k + 1) u(k)

g(0)
g(1)
g(2)

 =

 y(k)
y(k + 1)
y(k + 2)

−
 ξ(k)

ξ(k + 1)
ξ(k + 2)


Of form Φθ = Z +E. Premultiplying by transpose of coefficient matrix & ignoring noise, u(k) u(k + 1) u(k + 2)

u(k − 1) u(k) u(k + 1)
u(k − 2) u(k − 1) u(k)

 u(k) u(k − 1) u(k − 2)
u(k + 1) u(k) u(k + 1)
u(k + 2) u(k + 1) u(k)

 =

 u(k) u(k + 1) u(k + 2)
u(k − 1) u(k) u(k + 1)
u(k − 2) u(k − 1) u(k)

 y(k)
y(k + 1)
y(k + 2)


ΦT Φθ = ΦT Z
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3. One Step Ahead Prediction Error Model

ξ(n)

G(z)

H(z)

v(n)

y(n)u(n)

y(n) = G(z)u(n) + v(n)

Best estimate:

ŷ(n|n− 1) = G(z)u(n) + v̂(n|n− 1)

Noise model, using white noise

v(n) = h(n) ∗ ξ(n)

Can take leading term of h to be 1:

v(n) = ξ(n) +
∞∑
l=1

h(l)ξ(n− l)

Best prediction of v(n) is its expectation:

v̂(n|n− 1) = E [v(n)]

= E [ξ(n)] + E

[ ∞∑
l=1

h(l)ξ(n− l)

]

White noise, past terms

v̂(n|n− 1) = h(n) ∗ ξ(n)− ξ(n)

In mixed notation:

v̂(n|n− 1) = H(z)ξ(n)− ξ(n) = (H(z)− 1)ξ(n)

= (H(z)− 1)H−1(z)v(n) = (1−H−1(z))v(n)

Can show: H, H−1 stable. Substitute in ŷ:

ŷ(n|n− 1) = G(z)u(n) + (1−H−1(z))v(n)

= G(z)u(n) + [1−H−1(z)][y(n)−G(z)u(n)]

= H−1(z)G(z)u(n) + [1−H−1(z)]y(n)
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4. One Step Ahead PEM - Examples

Model:

y(k) = G(z)u(k) + H(z)ξ(k)

Prediction model:

ŷ(k|k − 1) = H−1(z)G(z)u(k)

+ [1−H−1(z)]y(k)

FIR model:

y(k) = B(z)u(k) + ξ(k)

Obtain,

G(z) = B(z), H(z) = 1

Substituting, prediction model for FIR:

ŷ(k|k − 1) = B(z)u(k)

Next, consider ARX model:

A(z)y(k) = B(z)u(k) + ξ(k)

Obtain,

G(z) =
B(z)

A(z)
, H(z) =

1

A(z)

Substituting, prediction model for ARX:

ŷ(k|k − 1) = A(z)
B(z)

A(z)
u(k) + (1− A(z))y(k)

= B(z)u(k) + (1− A(z))y(k)
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5. Models of Interest

• Finite Impulse Response (FIR) model, which is of the form,

y(n) = B(z)u(n) + ξ(n)

• Auto Regressive with eXogeneous input (ARX) model, which is of the

form,

A(z)y(n) = B(z)u(n) + ξ(n)

• Auto Regressive Moving Average with eXogeneous (ARMAX) model,

which is of the form,

A(z)y(n) = B(z)u(n) + C(z)ξ(n)
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6. Models of Interest - Continued

• Auto Regressive Integrated Moving Average with eXogeneous (ARIMAX)

model, which is of the form,

A(z)y(n) = B(z)u(n) +
C(z)

∆(z)
ξ(n)

where, ∆ = 1− z−1.

• Output Error (OE) model, the general form of which is given as,

y(n) = G(z)u(n) + ξ(n)

where, G is a transfer function. FIR is an OE model. Others are equation

error models.

• Box Jenkins (BJ) model, which is of the form,

y(n) = G(z)u(n) + H(z)ξ(n)

G(z) and H(z) are transfer functions

CL 692 Digital Control, IIT Bombay 6 c©Kannan M. Moudgalya, Autumn 2006



7. FIR Model as a Regression Equation

y(k) =
N∑

l=0

g(l)u(k − l) + ξ(k)

Writing the equations for y(k), y(k − 1), . . . and stacking them one below another,

 y(k)
y(k − 1)

...

 =

 u(k) · · · u(k −N)
u(k − 1) · · · u(k −N − 1)

...




g(0)
g(1)

...
g(N)

 +

 ξ(k)
ξ(k − 1)

...


This is in the form of Z(k) = Φ(k)θ + Ξ(k) with

Z(k) =

 y(k)
y(k − 1)

...

 , Φ(k) =

 u(k) · · · u(k −N)
u(k − 1) · · · u(k −N − 1)

...

 θ =


g(0)
g(1)

...
g(N)

 , Ξ(k) =

 ξ(k)
ξ(k − 1)

...


Note that θ consists of the impulse response coefficients g(0), . . ., g(N).
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8. ARX Model as a Regression Equation

y(k) = a1y(k − 1) +
N∑

l=0

g(l)u(k − l) + ξ(k)

 y(k)
y(k − 1)

...

 =

y(k − 1) u(k) · · · u(k −N)
y(k − 2) u(k − 1) · · · u(k −N − 1)

...




a1

g(0)
g(1)

...
g(N)

 +

 ξ(k)
ξ(k − 1)

...



This is in the form of Z(k) = Φ(k)θ + Ξ(k) with

Z(k) =

 y(k)
y(k − 1)

...

 , Φ(k) =

y(k − 1) u(k) · · · u(k −N)
y(k − 2) u(k − 1) · · · u(k −N − 1)

...

 , θ =


a1

g(0)
g(1)

...
g(N)


Note that θ consists of a1 and the impulse response coefficients g(0), . . ., g(N).
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9. Least Squares Estimation: Regression Equation

• Least Squares Estimation is a convenient method to determine model parameters
from experimental data.

• Let the model that relates the parameters and experimental data be given by

Z(k) = Φ(k)θ + Ξ(k).

• Z(k) and Φ(k) consist of measurements and θ is a vector of parameters to be
estimated.

• Ξ(k) can be thought of as a mismatch between the best that the underlying model,
characterized by θ, can predict and the actual measurement Z(k). Ξ(k) can also be
thought of as random measurement noise.

• Known as the regression equation.

• Argument k is required in identification problems that received data on a continuous
basis.

• If the problem at hand is to determine a set of parameters θ from one and only set
of experimental data, there is no need to include this argument.
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10. Solution to Least Squares Problem

Regression equation:

Z(k) = Φ(k)θ + Ξ(k)

Assume E to be negligible. Model:

Ẑ(k) = Φ(k)θ̂(k)

θ̂(k): estimate. Error:

Z̃(k)
4
= Z(k)− Ẑ(k)

Want Z̃ to be small. 2×2 example:

Z(k) =

[
y(k)

y(k − 1)

]
, Ẑ(k) =

[
ŷ(k)

ŷ(k − 1)

]
Z̃(k) =

[
z̃(k) = y(k)− ŷ(k)

z̃(k − 1) = y(k − 1)− ŷ(k − 1)

]

Form an objective function to minimize:

Z̃T (k)W (k)Z̃(k) =
[
z̃(k) z̃(k − 1)

][
w(k) 0

0 w(k − 1)

] [
z̃(k)

z̃(k − 1)

]
=

[
z̃(k) z̃(k − 1)

] [
w(k)z̃(k)

w(k − 1)z̃(k − 1)

]
= w(k)z̃2(k) + w(k − 1)z̃2(k − 1)

Minimize objective function to find θ̂:

J [θ̂(k)] = w(k)z̃2(k) + · · ·+ w(k −N)z̃2(k −N)

= Z̃(k)W (k)Z̃(k)

= [Z(k)− Ẑ(k)]TW (k)[Z(k)− Ẑ(k)]

Minimize J and determine θ̂WLS:

θ̂WLS(k) = arg min
θ

J [θ̂(k)]

CL 692 Digital Control, IIT Bombay 10 c©Kannan M. Moudgalya, Autumn 2006



11. Solution to Least Squares Problem - Continued

Recall θ̂WLS is obtained by minimizing

J [θ̂(k)] = [Z(k)− Ẑ(k)]TW (k)[Z(k)− Ẑ(k)]

Ẑ(k) = Φ(k)θ̂(k)

Substituting for Ẑ(k),

J [θ̂(k)] = [Z(k)− Φ(k)θ̂(k)]TW (k)[Z(k)− Φ(k)θ̂(k)]

We drop the argument k temporarily for convenience and obtain,

J [θ̂] = ZTWZ − 2ZTWΦθ̂ + θ̂TΦTWΦθ̂

To find θ̂ at which J is minimum, differentiate and equate to zero:

∂J

∂θ̂
= −2ΦTWZ + 2ΦTWΦθ̂ = 0

From this, we arrive at the normal equation,

ΦTWΦθ̂ = ΦTWZ

Assume that ΦTWΦ is nonsingular. Persistence Condition.

θ̂WLS(k) = [ΦT (k)W (k)Φ(k)]−1ΦT (k)W (k)Z(k)
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