CL 692 - Digital Control

Kannan M. Moudgalya

Department of Chemical Engineering Associate Faculty Member, Systems and Control

IIT Bombay

Autumn 2006

1

CL 692 Digital Control, IIT Bombay

©Kannan M. Moudgalya, Autumn 2006

1. Topics to be covered

- Modelling
- Signal Processing
- Identification
- Transfer function approach to control design
- State space approach to control design

You will think digital at the end of the course

2. Objectives of a Control Scheme

- To stabilize unstable plants
- To improve the performance of plants (rise time, overshoot, settling time)
- To remove the effect of disturbance (load) and noise
- •
- If a good model is available, use feed forward control scheme
- If a good model is not available, use feedback control scheme
- \bullet Often, we don't have good models \Rightarrow feedback control schemes are preferred

CL 692 Digital Control, IIT Bombay

3

©Kannan M. Moudgalya, Autumn 2006

3. Schematic of Feedback Control

- G: denotes plant or process
- G_c : denotes digital controller
- r: reference variable, setpoint
- v: disturbance variable
- y: plant output or controlled variable
- u: plant input or manipulated variable or control effort

4. Digital Signals

- Digital systems deal with digital signals
- Digital signals are
 - quantized in value
 - discrete in time
- As 0 or 1 refers to a range of voltages, digital signals can be made less noisy
- Can implement error checking protocols
- So digital devices became popular impetus for advancement of digital systems
- Digital devices have become rugged, compact, flexible and inexpensive
- Modern controllers are based on digital systems

CL 692 Digital Control, II	T Bombay E	6 ©Kannan M. M	Ioudgalya, Autumn 2006
5. Noise Marg	gin - Impetus fo	r Growth of Digi	tal Devices
source sink		 Can pick up noise, voltage can increase by 0.4V, still considered low signal 	
 If transmitted signal is received exactly, no noise 			
 Analog circuitry always has noise 		• Note: if voltage decreases be- cause of noise, no probem $\Delta 0 = 0.8 - 0.4 = 0.4 V$	
 Digital devices have good noise margins 			
Example: TTL		High:	
Low Voltage (0)		At output	At input
At output:	At input:	Considered high	Considered high
Considered low if voltage < 0.4 V	Considered low if voltage $< 0.8V$	if voltage > 2.4V if voltage > 2V $\Delta 1 = 2.4 - 2.0 = 0.4V$	

6

6. Advantages of Digital Control

- All modern controllers are digital even if they appear to be analog
- Can easily implement complicated algorithms
- Flexible, can easily change algorithms
- Low prices can achieve complicated algorithms without much expenditure
- Analysis of difference equations is easier than differential equations so easier to design digital controllers
- How do we connect digital controllers with real life objects, which could be analog?

CL 692 Digital Control, IIT Bombay

7

©Kannan M. Moudgalya, Autumn 2006

7. Analog to Digital Conversion

- Analog to Digital (A/D) converter produces digital signals from analog signals
- Higher signal frequency requires faster sampling rate
- \bullet But uniform sampling rate is used in an A/D converter

- Quantization errors
 - Finiteness of bits quantization errors
 - Increase number of bits to reduce errors
 - Falling hardware prices help achieve this
- Sampling rate
 - Slow rate \Rightarrow loss of information
 - $\begin{array}{rrr} \mbox{ Fast rate } \Rightarrow \mbox{ computa-} \\ \mbox{ tional load } \end{array}$
- Analog's output is sent to digital through A/D. Reverse?

8. Digital to Analog Conversion

- Real life systems are analog
- Cannot work with binary numbers
- Binary \Rightarrow D/A \Rightarrow analog
- Need to know values at all times
- The easiest way to handle this to use Zero Order Hold (ZOH)
- Complicated hold devices possible.

CL 692 Digital Control, IIT Bombay

Discrete ZOH Signals

- ZOH is the most popular
- We will consider only ZOH in this course
- Assumption used in this course:
 - All inputs are ZOH signals
 - OK when the input is produced by a digital device
 - Also OK when the input signal varies slowly

©Kannan M. Moudgalya, Autumn 2006

9. Magnetically Suspended Ball

- Current through coil induces magnetic force
- Magnetic force balances gravity
- Ball is suspended in midair 1 cm from core
- Want to move to another equilibrium

Force balance:

$$M\frac{d^2h}{dt^2} = Mg - \frac{Ki^2}{h}$$

Voltage balance

$$V = L\frac{di}{dt} + iR$$

9

Magnetically Suspended Ball 10.

Model equations:

$$M\frac{d^{2}h}{dt^{2}} = Mg - \frac{Ki^{2}}{h}$$
$$V = L\frac{di}{dt} + iR$$

In deviation variables:

$$\begin{split} 0 &= M \frac{d^2 h_s}{dt^2} = Mg - \frac{K i_s^2}{h_s} \\ M \frac{d^2 \Delta h}{dt^2} &= -K \left[\frac{i^2}{h} - \frac{i_s^2}{h_s} \right] \end{split}$$

Linearize RHS:

$$\frac{i^2}{h} = \frac{i^2_s}{h_s} + 2\frac{i}{h} \Big|_{(i_s,h_s)} \Delta i - \frac{i^2}{h^2} \Big|_{(i_s,h_s)} \Delta h$$
$$= \frac{i^2_s}{h_s} + 2\frac{i_s}{h_s} \Delta i - \frac{i^2_s}{h^2_s} \Delta h$$

Substitute and simplify

$$\begin{split} M \frac{d^2 \Delta h}{dt^2} &= -K \left[\frac{i_s^2}{h_s} + 2 \frac{i_s}{h_s} \Delta i - \frac{i_s^2}{h_s^2} \Delta h - \frac{i_s^2}{h_s} \right] \\ \frac{d^2 \Delta h}{dt^2} &= \frac{K}{M} \frac{i_s^2}{h_s^2} \Delta h - 2 \frac{K}{M} \frac{i_s}{h_s} \Delta i. \end{split}$$

Voltage balance in deviation:

$$\Delta V = L \frac{d\Delta i}{dt} + R\Delta i$$

CL 692 Digital Control, IIT Bombay

11

©Kannan M. Moudgalya, Autumn 2006

Magnetically Suspended Ball - Continued 3 11.

Force balance:

$$\frac{d^2 \Delta h}{dt^2} = \frac{K}{M} \frac{i_s^2}{h_s^2} \Delta h - 2 \frac{K}{M} \frac{i_s}{h_s} \Delta i$$

Voltage balance:

$$\Delta V = L \frac{d\Delta i}{dt} + R \Delta i$$

Define new variables

$$\begin{array}{l} x_1 \stackrel{\Delta}{=} \Delta h \\ x_2 \stackrel{\Delta}{=} \Delta \dot{h} \\ x_3 \stackrel{\Delta}{=} \Delta i \\ u \stackrel{\Delta}{=} \Delta V \end{array} \qquad \begin{array}{l} \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \\ This \text{ is of } t \end{array}$$

$$\frac{dx_1}{dt} = x_2$$

$$\frac{dx_2}{dt} = \frac{K}{M} \frac{i_s^2}{h_s^2} x_1 - 2\frac{K}{M} \frac{i_s}{h_s} x_3$$

$$\frac{dx_3}{dt} = -\frac{R}{L} x_3 + \frac{1}{L} u$$

In matrix form:

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{K}{M} \frac{i_s^2}{h_s^2} & 0 & -2\frac{K}{M} \frac{i_s}{h_s} \\ 0 & 0 & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{L} \end{bmatrix} u$$

the form

$$\dot{x}(t) = Fx(t) + Gu(t)$$

12. Magnetically Suspended Ball - Continued 4

$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	$ \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ \frac{K}{M} \frac{i_s^2}{h_s^2} & 0 & -2\frac{K}{M} \frac{i_s}{h_s} \\ 0 & 0 & -\frac{R}{L} \end{bmatrix} $	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{L} \end{bmatrix} u$
M	Mass of ball	0.05 Kg
L	Inductance	0.01 H
R	Resistance	$1 \ \Omega$
K	Coefficient	0.0001
g	Acceleration due to gravit	ty $9.81\ m/s^2$
h_s	Equilibrium Distance	0.01 m
i_s	Current at equilibrium	7A
$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$	$= \begin{bmatrix} 0 & 1 & 0 \\ 981 & 0 & -2.801 \\ 0 & 0 & -100 \end{bmatrix}$	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 100 \end{bmatrix} u$

CL 692 Digital Control, IIT Bombay

13

©Kannan M. Moudgalya, Autumn 2006

13. Model of a Flow System

$$A\frac{dh(t)}{dt} = Q_i(t) - k\sqrt{h(t)}$$

Initially at steady state

$$0 = A \frac{dh_s}{dt} = Q_{is} - k\sqrt{h_s}$$

Linearise with Taylor's series approximation:

$$\frac{d\Delta h(t)}{dt} = -\frac{k}{2A\sqrt{h_s}}\Delta h(t) + \frac{1}{A}\Delta Q_i(t)$$

Initial condition:

• at
$$t = 0$$
, $h(t) = h_s$ or $\Delta h(t) = 0$.

It can be written as,

$$\dot{x} = Fx + Gu$$

Known as *state space* equation.

14. IBM Lotus Domino Email Server

- Clients access the database of emails maintained by the server through Remote Procedure Calls (RPCs).
- \bullet Number of $\rm RPCs,$ denoted as $\rm RIS$ has to be controlled.
- If the number of RIS becomes large, the server could be overloaded, with a consequent degradation of performance.
- \bullet If ${\rm RIS}$ is less, the server is not being used optimally.
- Not possible to regulate RIS directly.
- Regulation of RIS may be achieved by limiting the maximum number of users (MaxUsers) who can simultaneously use the system.
- Because of stochastic nature, difficult to come up with analytic model.
- Obtained through expt., data collection, curve fitting (identification).

$$y(k) = \text{RIS}(k) - \overline{\text{RIS}}$$
$$u(k) = \text{MaxUsers}(k) - \overline{\text{MaxUsers}}$$
$$y(k+1) = 0.43y(k) + 0.47u(k)$$

CL 692 Digital Control, IIT Bombay

15

©Kannan M. Moudgalya, Autumn 2006

15. Motivation for Discrete Model

- Real systems are continuous
- Digital controller's view of the process:
 - Receives sampled signals. Sends out sampled signals
 - Thus views the process as a sampled system
- Hence, to determine the control effort, a discrete model of the plant is required
 - Discrete model relates the system variables as a function of their values at previous time instants
 - No value required/used in between sampling instants. Time derivatives have no meaning
- We will next explain how to arrive at discrete models