
1. s to Z-Domain Transfer Function

Discrete
ZOH

Signals

1. Determine the step re-
sponse of the contin-
uous transfer function
ys(t).

2. Discretize the step re-
sponse to arrive at
ys(nTs).

1. Z-transform the step response
to obtain Ys(z).

2. Divide the function obtained
in the above step by the Z-
transform of a step input,
namely, z/(z − 1).

• Ga(s): Laplace transfer func-
tion

• G(z): Z-transfer function

G(z) =
z − 1

z
Z

[
L−1Ga(s)

s

]
Step Response Equivalence = ZOH Equivalence
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2. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an ↔ z

z − a
=

∞∑
n=0

anz−n,

Differentiating w.r.t. a,

z

(z − a)2
=

∞∑
n=0

nan−1z−n

nan−11(n)↔ z

(z − a)2

n(n− 1)an−21(n)↔ 2z

(z − a)3

Example

n21(n) = [n(n− 1) + n] 1(n)

• Notice that a = 1
now.

• Take Z-transform,

↔ 2z

(z − 1)3
+

z

(z − 1)2

=
z2 + z

(z − 1)3
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3. ZOH Equivalence of 1/s

The step response of 1/s is 1/s2. In time domain, it is given by,

ys(t) = L−1 1

s2
= t

Sampling it with a period of Ts,

ys(nTs) = nTs

Taking Z-transforms

Ys(z) =
Tsz

(z − 1)2

Divide by z/(z− 1), to get the ZOH equivalent discrete domain
transfer function

G(z) =
Ts

z − 1
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4. ZOH Equivalence of 1/s2

The step response of 1/s2 is 1/s3. In time domain, it is given by,

ys(t) = L−1 1

s3
=

1

2
t2.

Sampling it with a period of Ts,

ys(nTs) =
1

2
n2T 2

s

Take Z-transform

Ys(z) =
T 2

s z(z + 1)

2(z − 1)3

Dividing by z/(z − 1), we get

G(z) =
T 2

s (z + 1)

2(z − 1)2
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5. ZOH Equivalent First Order Transfer Function

Find the ZOH equivalent of K/(τs + 1).

Ys(s) =
1

s

K

τs + 1
= K

[
1

s
− 1

s + 1
τ

]
ys(t) = K

[
1− e−t/τ

]
, t > 0

ys(nTs) = K
[
1− e−nTs/τ

]
1(n) = K

[
1(n)− e−nTs/τ1(n)

]
Ys(z) = K

[
z

z − 1
− z

z − e−Ts/τ

]
=

Kz(1− e−Ts/τ)

(z − 1)(z − e−Ts/τ)

Dividing by z/(z − 1), we get

G(z) =
K(1− e−Ts/τ)

z − e−Ts/τ
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6. ZOH Equivalent First Order Transfer Function - Example

Sample at Ts = 0.5 and find ZOH equivalent trans. function of

Ga(s) =
10

5s + 1

Matlab Code:

Ga = tf(10,[5 1]);
G = c2d(Ga,0.5);

Matlab output is,

G(z) =
0.9546

z − 0.9048
=

10(1− e−0.1)

z − e−0.1

In agreement with the formula in the previous slide
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7. Discrete Integration

y(k) = blue shaded area

+ red shaded area

y(k) = y(k − 1) + red shaded area

y(k) = y(k − 1) +
Ts

2
[u(k) + u(k − 1)]

Take Z-transform:

Y (z) = z−1Y (z) +
Ts

2

[
U(z) + z−1U(z)

]
Bring all Y to left side:

Y (z)− z−1Y (z) =
Ts

2

[
U(z) + z−1U(z)

]
(1− z−1)Y (z) =

Ts

2
(1 + z−1)U(z)
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8. Transfer Function for Discrete Integration

Recall from previous slide

(1− z−1)Y (z) =
Ts

2
(1 + z−1)U(z)

Y (z) =
Ts

2

1 + z−1

1− z−1
U(z)

=
Ts

2

z + 1

z − 1
U(z)

Integrator has a transfer function,

GI(z) =
Ts

2

z + 1

z − 1

A low pass filter!

×

1

s
↔ Ts

2

z + 1

z − 1
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9. Derivative Mode

• Integral Mode:
1

s
↔ Ts

2

z + 1

z − 1

• Derivative Mode: s↔ 2

Ts

z − 1

z + 1

• High pass filter

• Has a pole at z = −1. Hence produces in partial fraction
expansion, a term of the form

z

z + 1
↔ (−1)n

• Results in wildly oscillating control effort.
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10. Derivative Mode - Other Approximations

Backward difference: y(k) = y(k − 1) + Tsu(k)

(1− z−1)Y (z) = TsU(z)

Y (z) = Ts
1

1− z−1
= Ts

z

z − 1
U(z)

1

s
↔ Ts

z

z − 1
Forward difference: y(k) = y(k − 1) + Tsu(k − 1)

(1− z−1)Y (z) = Tsz
−1U(z)

Y (z) = Ts
z−1

1− z−1
U(z) =

Ts

z − 1
U(z)

1

s
↔ Ts

z − 1

Both derivative modes are high pass, no oscillations, same gains
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11. PID Controller
Proportional Mode: Most popular control mode. Increase

in proportional mode generally results in

• Decreased steady state offset and increased oscillations

Integral Mode: Used to remove steady state offset. Increase
in integral mode generally results in

• Zero steady state offset

• Increased oscillations

Derivative Mode: Mainly used for prediction purposes. In-
crease in derivative mode generally results in

• Decreased oscillations and improved stability

• Sensitive to noise

The most popular controller in industry.
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12. PID Controller - Basic Design

Let the input to the controller by E(z) and the output from it be
U(z). If gain is K, τi is integral time and τd is derivative time,

u(t) = K

[
e(t) +

1

τi

∫ t

0

e(t)dt + τd
de(t)

dt

]
U(s) = K(1 +

1

τis
+ τds)E(s)

U(s)
4
=

Sc(s)

Rc(s)
E(s)

If integral mode is present, Rc(0) = 0. Filtered derivative mode:

u(t) = K

(
1 +

1

τis
+

τds

1 + τds
N

)
e(t)

N is a large number, of the order of 100.
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13. Reaction Curve Method - Ziegler Nichols Tuning

• Applicable only to stable systems

• Give a unit step input to a stable system and get

1. the time lag after which the system starts responding (L),

2. the steady state gain (K) and

3. the time the output takes to reach the steady state, after
it starts responding (τ )

R =
K

τ

L τ

K
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14. Reaction Curve Method - Ziegler Nichols Tuning

R =
K

τ

L τ

K

• Let the slope of the response be calculated as R =
K

τ
. Then

the PID settings are given below:

Kp τi τd

P 1/RL
PI 0.9/RL 3L
PID 1.2/RL 2L 0.5L

Consistent units should be used
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15. Stability Method - Ziegler Nichols Tuning

Another way of finding the PID tuning parameters is as follows.

• Close the loop with a proportional controller

• Gain of controller is increased until the closed loop system
becomes unstable

• At the verge of instability, note down the gain of the controller
(Ku) and the period of oscillation (Pu)

• PID settings are given below:

Kp τi τd

P 0.5Ku

PI 0.45Ku Pu/1.2
PID 0.6Ku Pu/2 Pu/8

Consistent units should be used
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16. Design Procedure

A common procedure to design discrete PID controller:

• Tune continuous PID controller by any popular technique

• Get continuous PID settings

• Discretize using the method discussed now or the ZOH equiv-
alent method discussed earlier

• Direct digital design techniques
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17. 2-DOF Controller

yT
c

R
c

G =

B

A

S
c

R
c

r u

−

u =
Tc

Rc
r − Sc

Rc
y

It is easy to arrive at the following relation between r and y.

y =
Tc

Rc

B/A

1 + BSc/ARc
r =

BTc

ARc + BSc
r

Error transfer function:

e = r − y =

(
1− BTc

ARc + BSc

)
r =

ARc + BSc −BTc

ARc + BSc
r
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18. Offset-Free Tracking of Steps with Integral Action

E(z) =
A(z)Rc(z) + B(z)Sc(z)−B(z)Tc(z)

A(z)Rc(z) + B(z)Sc(z)
R(z)

lim
n→∞

e(n) = lim
z→1

z − 1

z

A(z)Rc(z) + B(z)Sc(z)−B(z)Tc(z)

A(z)Rc(z) + B(z)Sc(z)

z

z − 1

Because the controller has an integral action, Rc(1) = 0:

e(∞) =
Sc(z)− Tc(z)

Sc(z)

∣∣∣∣
z=1

=
Sc(1)− Tc(1)

Sc(1)

This condition can be satisfied if one of the following is met:

Tc = Sc

Tc = Sc(1)

Tc(1) = Sc(1)
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19. Tc = Sc: Offset-Free Tracking with Integral Action

yT
c

R
c

G =

B

A

S
c

R
c

r u

−

Tc = Sc results in

U(s) = K(1 +
1

τis
+ τds)E(s)

Integral Mode:
1

s
↔ Ts

2

z + 1

z − 1
. Derivative Mode: s↔ 1

Ts

z − 1

z
:

U(z) = K

[
1 +

1

τi

Ts

2

z + 1

z − 1
+

τd

Ts

z − 1

z

]
E(z)
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20. Tc = Sc: Offset-Free Tracking with Integral Action

U(z) = K

[
1 +

1

τi

Ts

2

z + 1

z − 1
+

τd

Ts

z − 1

z

]
E(z)

Simplifying this, obtain

u(n + 1) = u(n) + s0e(n + 1) + s1e(n) + s2e(n− 1)

s0 = K

[
1 +

Ts

2τi
+

τd

Ts

]
s1 = K

[
−1 +

Ts

2τi
− 2

τd

Ts

]
s2 = K

τd

Ts

Smooth transfer from manual to auto mode. Bumpless transfer.
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