o0

If the infinite sum converges,

X(e¥) = x(n)e <" > L
X(ej(w+27rk)> _ x(n>€—j(w+27rk)n N 00 T
nzoo =2 x(m) + Z a:(n)/ /=,
= X(ejw) n=—00,n#m -
o eJw(m—n) &
e X(e/¥) is periodic with period — 2m x(m) + Z z(n) i(m —n)
27. So, it has a Fourier Series. n=—o00,n7m -
= 2mx(m)
e z(n) can be calculated by inte-
grating both sides From the above, solving for z(m),
™ ) ) 1 s ' )
/ X (e?)e? ™ dw x(m) = 2—/ X (e?)e! ™ dw
. ) .
T o0 . . 1/2 _
7 | = — o0 —1/2
CL 692 Digital Control, IIT Bombay 1 ©Kannan M. Moudgalya, Autumn 2006

y(n) =

1
o(—1) = 9(0) = g(1) = 5
G(ejw) — Z g(”)’z_n‘z—eﬂ”
1:_oow —jw
=3 (e +1+e")
= %(1 + 2 cosw)
G ()| = %(1 + 2 cosw)|

u(n + 1) + u(n) + uln — 1)

0 0<w<Z
7 2%§w<7r

Arg(©) = {

1 w= 0:0.01:pi;
subplot(2,1,1)
plot (w,abs(1+2xcos(w))/3),
grid , ylabel( ' Magnitude’)
subplot (2,1,2)
plot (w,angle(1+2xcos(w))),
grid, xlabel('w’), ylabel( 'Phase’)

N o o e W N

CL 692 Digital Control, IIT Bombay
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1

y(n) = uln) —u(n — 1) z
G (") = G(2)|,—pjw
Z g(n)z_nlz—ejw
= 1_— e v

_ o) <ejw/2 _ e—jw/2)

= 2jeIul2 sin%

1

3

w= 0:0.01:pi;
plot (w,abs(1+sin(w/2))), grid,
xlabel('w'), ylabel( Magnitude ')

L L L L L
0 0.5 1 15 2 25 3 35
w

sysd = tf([1 -1],1,-1);

|G| = Q\Sin%\ > w = logspace(—2,0.5);

bode(sysd ,w)

CL 692 Digital Control, IIT Bombay 3
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Symmetry of real and imaginary parts for real val-
ued sequences

G(ejw) = Z g(n)e 7mn

n=-—00
(0.9] e ¢}
= Z g(n)coswn — j Z g(n)sinwn
n=—oo n=—oo
G(e_“”) = Z g(n)el"
n=—00
0.¢] o}
= Z g(n) coswn + j Z g(n)sinwn

Comparing the above two equations, we get

Re [G (ejiw)} = Re [G (e_j“’)]
Im |G ()] = =Im |G (e7")]

We can summarize these properties
as

G (ejw) — G* (6—,]'11))
Symmetry of magnitude and phase

angle for real valued sequences

1/2

G ()| = [ () & ()]
~ [ () G (7))
= |G(e™")]

1/2

This shows that the magnitude is an
even function. In a similar way,

Arg [G (e7")] = —Arg [G (¢7")]

= Bode plots have to be drawn for
w in [0, 7] only.

CL 692 Digital Control, IIT Bombay 4
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u(n) = uy(nTy), —oco<n<oo (1)

FT pair for analog, discrete signals:

vip) = |

g (t)e I * F qt

wa(t) = / T ULF)ePE (2)
U(f)= D u(n)e "

1/2 '
utw) = | LU

Substituting Eq. 3 and Eq. 2 in Eq. 1,

1/2
/ J27rfndf /
-1/2

_/ U (F) ]QTnF/FSdF

JQﬂ'F nT, dF

1/2 ,
LHS = / U(f)el* I df
1/2

F,/2
:_/ ( ) ]27rnF/FdF
F,/2

RHS = / U, (F)e/>™F/Fsqp

o0 (k+1/2)F; '
= > / Ua(F)e* /P d
ke—oo Y (k—1/2)F;
F/2
Z / Q + kF )6]27rn(Q+kF )/Fsdg
he—oo ¥ —Fs/2

U (Q + kF,)e??™/ s g0

Fy/2
00 F,/2
> /.

k=—00

F,/2
/—FS/Q

UQ(F + kEg)€j27mF/FSdF

(=

=—00

U, (F + kF$)> eI 2 EIE g

CL 692 Digital Control, IIT Bombay
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F 0
U(F) :Fs Z Ua<F+sz):Fs[+Ua<F—F3>+Ua<F>+UQ<F‘|‘FS>'
5 k=—o00
uq(t) U.(F) P
! U (—0> = F,U,(F)
T L . F
t b ey e U is scaled version of
wa(nT) = u(n) v(£) U, - shape not affected
F, by sampling. Can re-
rrr /\ cover U, from U.
T o L s e U(F/Fy) is periodic in
F" with a period Fi:
Fy B Fy+ F - Fy—F, B _ Fy+ EF
U(E)‘U( F, )_U(T)_ _U< F)
k==+1, £2

CL 692 Digital Control, IIT Bombay
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U(E) ZU (F+kF,) = Fy[- -+ + Uy(Fy — F,) + Uy(Fy) + Uy (Fy +

k=—o00

i F e Consequence of aliasing:

F
U(£) o
T/r \/\ = Fs[Ua<FO — F5> + Ua(F())]

= F[overlapping value + U,(F})]

e Cannot recover U, from U,

I 5

r nents have changed.

*
ol

CL 692 Digital Control, IIT Bombay 7 ©Kannan M. Moudgalya, Autumn 2006

U’F+F //N U’F F
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e Suppose highest frequency con-
tained in an analog signal u,(t) is
Frax = B.

e |t is sampled at a rate F, >
2F .. = 2B.

e u,(t) can be exactly recovered
from its sample values:

Uq(t) = i ua(nTS)Sm{

n=—oo

o If Fi, = 2F,. Fj is denoted by
F'y, the Nyquist rate.

e Not causal: check n > 0

e To calculate analog signal at £, we
need sampled values for all future
times, corresponding to n > 0

e Hence for control purposes, this
reconstruction is not useful.

e Provides absolute minimum limit
of sampling rate.

e If sampling rate is lower than
this minimum, no filter (whether
causal or not) can achieve ex-
act reproduction of the continuous
function from the sampled signals.

CL 692 Digital Control, IIT Bombay 9
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Gain of Sample and Hold (see Text),

st =

1 —~——
0.9
0.8}
0.7
0.6

5 051
0.4
03[
0.2

01r

0

T
|
|
T
|
|
|
|
I
|
|
i
|
|
i
|
|
|
|
|
|
|
|
I
|
i
I
|
I
2!
f

I I I I I I I I I
o 0.05 01 0.15 0.2 0.25 03 0.35 0.4 0.45 0.5

e Least distortion for f ~ 0
e Max. distortion for f ~ (0.5

e Recall normalized frequency:
f:F/FS> fmaX:B/Fs
e Minimum sampling rate

F571 = 2B = fmax,l = 0.5

e Sample at twice the minimum
Fso =4B = fiax2 = 0.25
Maximum deviation = 10%
e Sample at 4 times minimum
Fy3 =8B = fnax3 = 0.125
Maximum deviation = 3%

e Fast sampling is better

CL 692 Digital Control, IIT Bombay 10

©Kannan M. Moudgalya, Autumn 2006



e Minimum sampling rate = twice band width
e Problems
— Not really band limited

— Systems are generally nonlinear

— Shannon'’s reconstruction cannot be implemented, have to use ZOH
e Solution: sample faster

— Number of samples in rise time = 4 to 10
— Sample 10 to 30 times bandwidth
— Use 10 times Shannon's sampling rate

— w5 = 0.15 to 0.5, where, w. = crossover frequency

CL 692 Digital Control, IIT Bombay 11 ©Kannan M. Moudgalya, Autumn 2006

e Measurements are often corrupted by high frequency noise, which have
to be filtered before further processing.

e Systems that transmit the low frequency information while removing the
effect of high frequency noise are known as low pass filters and this action
is known as low pass filtering.

e Sometimes we are interested in monitoring of a transient response so as
to take early corrective action. Often this requires a derivative action that
works on the basis of the slope of the response curve. We will see later
that this requires the usage of the high frequency content of the response.

e Indeed we may be interested in filtering of the frequency content in some
arbitrary frequency range while passing the others.

e Will demonstrate that such things can be achieved by suitable choice of
pole and zero locations.

CL 692 Digital Control, II'T Bombay 12 ©Kannan M. Moudgalya, Autumn 2006



o Apply input u(k) = a*1(k)
to an LTI system with with
transfer function G(z).

e Want to know what happens
to frequency content of u by
G(z). Let a be of the form
e/’ and let G(2) not have a
pole at a.

z—a
2
Y(z)=ey+ e

z—a
+ {terms due to
poles of G(2)}

If e is large, input is present in the output y.
If €1 is small, effect of u is removed.

G(z) S eo + e ©
z—a —a
+ { terms due to the poles of G(2)}
z—a 2
e =200 2 = G

e If we want to pass the input signal a” in
the output, choose G(a) large

e A small G(a) would result in the reduction
of this input signal in the output

e Large G(a) can be achieved if G(z) has a

pole close to a

e A zero of G(2) near a will ensure the re-
jection of the effect of w on the output.

CL 692 Digital Control, IIT Bombay
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e If input frequency w; is to be N
passed through G(z), place poles

of G(z) near wy

e If it is to be filtered, place zeros of

G(z) near wy

e Unique frequency values are in

<_7Tv 7T]

e w close to 0 corresponds to low
frequencies while w close to +7
corresponds to high frequencies

High Low
Frequency Frequency

High Low

e Notice that /¥ with w € (—, ] Pass Pass

defines the unit circle. As a result,
we can mark the low and high fre-
quency regions as in the figure:

CL 692 Digital Control, IIT Bombay
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e To pass signals of frequency w, we should place poles near wy

e To reject wy, we should place zeros near wy

Im(z)

Im(z)
Re(2) Re(2)
Low pass filter High pass filter
e Place the poles inside unit circle for stability
e If complex, choose in conjugate pairs
CL 692 Digital Control, IIT Bombay 15 ©Kannan M. Moudgalya, Autumn 2006

0.5 RN

CGh(z) = z—0.5

Magnitude
/

G1(2)|.,=1 = 1, so that its steady state gain ‘ ‘ ‘
is 1. Substituting z = ¢/, we get '

. 0.5
G Jw = - 50 \\\\\\\‘ B
1(e™) v — 0.5
B 0.5 | |
(cosw — 0.5) + jsinw | | | | | ‘ ]
_05(cosw—0.5) — jsinw ' " ' ey - ’
" (cosw — 0.5)2 + sin®w
, 0.5
G1(e')| =
Gi(e™)] v1.25 — cosw
. sin w
/ Juy — _gan 22
Gi(e™) tan (cosw—0.5)

This filter magnifies the signal frequencies
near w = 0 in relation to other frequencies

CL 692 Digital Control, II'T Bombay 16 ©Kannan M. Moudgalya, Autumn 2006



To G4, add a zero at z = —1 .

z+1 .
G =0.25 Ei
2(2) 2—05
Notice that the factor 0.25 is included so as to make .
|Ga(2)].=1 = 1.
Gao(e’) ™41  cosw+jsinw+1 -l
K  ew—05 cosw+jsinw—0.5 g

~ [(cosw + 1) + jsinw][(cosw — 0.5) — jsinw] ol
B (cosw — 0.5)2 + sin® w
Ga(e™)  (cos>w 4 0.5cosw — 0.5) + sin® w
0.25  sin®w + cos?w + 0.25 — cosw
jsinw(cosw — 0.5 — cosw — 1)

sin? w + cos? w + 0.25 — cos w
(0.540.5cosw) — 1.5j sinw

1.25 — cosw

Gy = 0.25

e (G; solid line, G5 broken line

o |Ga(e)| < |G1(e?)] Yw > 0. Thus, Gy is a better
low pass filter.
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Calculate the response of Gs3(z) = . .
2+ k=n—i=1=0=Fk=n,

1 ) n
— for input u(n) = (—1)"1(n) i=n=k=0

> On simplifying,
Gg(z):z—lezil pyog
g3(n) =1(n) +1(n — 1) y(n) = [2 Z(—l)k] I(n) — (—1)"1(n)
sy =3 gliyuln—i) Ly )
o = 21_—(_1)1(n) — (=1)"1(n)
= > [16) + 1 — D]u(n — i) =1(n) [1 - (=1)"" = (=1)"]
i=—o0 = 1(n)
= Z u(n —1) + Zu(n — 1) e This shows that (—1)" has been fil-
i=0 i=1 tered.
=2 znzu(n — 1) —u(n) e This is because the filter has a zero
i=0 at (—1,0).
_ [2 Z(—m“] 1(n) = (~1)"1(n)
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y(n) =

[u(n+1)+u(n) 4+ un — 1))

35 T T T T T T
3l
2.5
o 2|
g
T 15F B
1k
05
0 L L L L L L
0 05 1 15 2 25 3
w

1
9(=1) =9(0) = g(1) = 5
s 0 0 27
_ <w < 5
G (/") = gn)z™"|,._jw Arg(GQ) = = 3
( ) nzz_:oo<> ‘zeﬂ rg() T Q%Sw<ﬂ—
L . w=0:0.01:pi;
- g(ejw+1+e jw) > Vs\,lubplot(2,1‘,){)
1 s plot(w,abs(14+2xcos(w))/3),
o . grid, ylabel (' Magnitude")
_§<1+2008w) 5 subplot(2,1,2) o
1 ¢ plot(w,angle(1+2xcos(w))),
|G(6‘jw) | _ |—<1—|—2COSUJ>| 7 grid, xlabel('w’'), ylabel( 'Phase’)
3
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1 w= 0:0.01:pi;
grid , ...

y<n> — u(ﬂ) — U(Tl — 1) > plot(w,abs(1+sin(w/2))),
s xlabel('w’), ylabel( ' Magnitude')
g(0)=1, g¢g(1)=-1 ——
Jwy — ,
G (") = G(2)| ,—pju
00
_ E -n
- g(”)'z |z:eﬁ”
n=—00
=1—e "
_ e Iw/? (eﬂv/2 _ e—Jw/Z)
R . w
— 2je 7"/ 2 gin —
2 1 osysd = tf([1 —1],1,—1);
. w > w = logspace(—2,0.5);
|G‘ - 2‘ SIHE‘ s bode(sysd ,w)
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e Fourier Transform pair for continuous signals:

— / X[Fle”™dF  X[F] = / x[tle ™ dt

(0]

e Fourier Transform pair for discrete time signals (DTFT):

o0

X () = Z z(n)e " x(m) =

n=—oo

1

- /W X (el dw

e Discrete Fourier Transform (DFT):

2

-1

— . 1 .
_ Z g<n)€—327rnk/N g<n> _ N G<k)6327rnk/]\7
= 0

=
|

e Fast Fourier Transform (FFT): Fast method to implement DFT
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