
1. Internal Stability

u(n)e(n)

−

y(n)
+

r(n)
g

c
(n) g(n)

• Notion in UG classes: output has to be stable

• Output being stable is not sufficient

• Every signal in the loop should be bounded

• If any signal is unbounded, will result in saturation / overflow
/ explosion

• When every signal is bounded, called internal stability

• If output is stable and if there is no unstable pole-zero can-
cellation, internal stability
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2. Pole-Zero Cancellation: Init. Condition

Study the system

x(k + 1)− ax(k) = u(k + 1)− au(k)

y(k) = x(k)

Can we take Z-transform

(z − a)X(z) = (z − a)U(z)

and cancel z − a in

X(z) =
z − a

z − a
U(z) = U(z)

Because we have taken Z-transform, this is yu

yu(k) = u(k)
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3. Pole-Zero Cancellation: Consider Initial Condition

x(k + 1)− ax(k) = u(k + 1)− au(k)

y(k) = x(k)

From the previous slide,

yu = u(k)

yx ⇒ input = 0

x(k + 1) = ax(k)

yx(k) = x(k) = ax(k − 1) = a2x(k − 2) = · · · = akx(0)

yx(k) = akx(0)

Total solution:

y(k) = yx(k) + yu(k) = akx(0) + u(k)
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4. Pole-Zero Cancellation: Can we take x(0) = 0?
y(k) = akx(0) + u(k)

If x(0) = 0,

y(k) = akx(0)// + u(k)

obtained by cancellation: If x(0) = 0, can cancel. Is it ok?

• Computers: zero = ' 10−17

• Hardware: zero = µ voltages 6= 0

• Actual: x(0) = ε, a small no. 6= 0

• When |a| > 1, cancellation results in ∞× 0 = 0, A blunder!

• Unstable pole-zero cancellation forbidden

• When |a| < 1, asymptotically correct, so acceptable
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5. Unstable Pole-Zero Cancelled System

� �� � � �� �� �� � � � �
� � � 	


�
� � �

y(n)e(n) 1

z + 0.5

Solution of cancelled system:

xs(k + 1) = −0.5xs(k) + e(k)

y(k)s = xs(k)

Iteratively solving,

ys(k) = (−0.5)mxs(0) +

k−1∑
m=0

(−0.5)me(k −m− 1)

Stable.
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6. Complete System without Pole-Zero Cancellation

� �� � � �� �� �� � � � �
� � � 	


�
� � �

Can verify for first block:

First block: x1(k + 1) = −0.5x1(k) + 1.5e(k)

u(k) = x1(k) + e(k)

Second block: x2(k + 1) = −2x2(k) + u(k)

y(k) = x2(k)

Substituting, x2(k + 1) = −2x2(k) + x1(k) + e(k)[
x1(k + 1)
x2(k + 1)

]
=

[
−0.5 0

1 −2

] [
x1(k)
x2(k)

]
+

[
1.5
1

]
e(k)

y(k) =
[
0 1

] [
x1(k)
x2(k)

]
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7. Complete System without Pole-Zero Cancellation

� �� � � �� �� �� � � � �
� � � 	


�
� � �[

x1(k + 1)
x2(k + 1)

]
=

[
−0.5 0

1 −2

] [
x1(k)
x2(k)

]
+

[
1.5
1

]
e(k)

y(k) =
[
0 1

] [
x1(k)
x2(k)

]
= CAkx(0) +

k−1∑
m=0

CAmbe(k −m− 1)

Can show that this is equal to

3

2

[
(−0.5)k (−2)k

] [
x1(0)

−x1(0) + 1.5x2(0)

]
+

k−1∑
m=0

(−0.5)me(k −m− 1)

x(0) 6= 0, results in y(k) being unbounded! Whence −2?
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8. Diagonalization

A: square matrix λi: ith eigenvalue xi: ith eigenvector

Ax1 = λ1x1
...

Axn = λnxn

Stacking these side by side,

A

 | |
x1 · · · xn

| |

 =

 | |
x1 · · · xn

| |

λ1 0
. . .

0 λn


AS = SΛ

Assume the eigenvectors to be independent ⇒ S−1 exists

A = SΛS−1

CL 692 Digital Control, IIT Bombay 8 c©Kannan M. Moudgalya, Autumn 2006



9. Diagonalization
A = SΛS−1

A2 = SΛS−1SΛS−1 = SΛ2S−1

A3 = SΛ2S−1SΛS−1 = SΛ3S−1

...

Ak = SΛkS−1

Easy to evaluate RHS:

Λk =

λk
1 0

. . .
0 λk

n


This approach is used to arrive at the solution.
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10. Condition for Cancellation of Poles and Zeros
� �� � � �� �� �� � � � �

� � � 	

�

� � �

Solution of system after cancellation:

ys(k) = (−0.5)mxs(0) +

k−1∑
m=0

(−0.5)me(k −m− 1)

Solution of system if there is no cancellation:

3

2

[
(−0.5)k (−2)k

] [
x1(0)

−x1(0) + 1.5x2(0)

]
+

k−1∑
m=0

(−0.5)me(k −m− 1)

Two solutions are identical only if

• x1(0) = 1.5x2(0) or

• x1(0) = x2(0) = 0.
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11. Forbid Unstable Pole-Zero Cancellation: Loop Variable

• Internal stability = all variables in loop are bounded for bounded
external inputs at all locations

• Can be checked by the following closed loop diagram

+
−

+
R1

G
c
=

n2

d2

R2

G =
n1

d1

E1 E2 Y+

• Can show that Output is stable + no pole-zero cancellation
= internal stability
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12. Unstable Pole-Zero Cancellation = No Internal Stability

+
−

+
R1

G
c
=

n2

d2

R2

G =
n1

d1

E1 E2 Y+

[
E1

E2

]
=

 1

1 + GGc
− G

1 + GGc
Gc

1 + GcG

1

1 + GcG

[
R1

R2

]

=

 d1d2

n1n2 + d1d2
− n1d2

n1n2 + d1d2
n2d1

n1n2 + d1d2

d1d2

n1n2 + d1d2

[
R1

R2

]

Suppose d1, n2 have a common factor:

d1 = (z + a)d′1
n2 = (z + a)n′1
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13. Unstable Pole-Zero Cancellation = No Internal Stability
Assume the cancellation of z + a,

G(z) =
n1(z)

(z + a)d′1(z)
, Gc(z) =

(z + a)n′2(z)

d2(z)

with |a| > 1. Assume stability of

TE =
1

1 + GGc
=

d′1d2

d′1d2 + n′1n2

T.F. between R2 and Y can be shown to be unstable. Let R1 =
0.

Y

R2
=

G

1 + GGc
=

n1d2

(d′1d2 + n1n′2)(z + a)

It is unstable and a bounded signal injected at R2 will produce
an unbounded signal at Y .
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14. Forbid Unstable Pole-Zero Cancellation, Get Causality
Not possible to realize this controller:

Gc =
1 + z−1

z−1

All sampled systems have at least one delay:

G(z−1) = z−kB(z−1)

A(z−1)
= z−kb0 + b1z

−1 + b2z
−2 + · · ·

1 + a1z−1 + a2z−2 + · · ·
• Controller not realizable ⇒ there is a common factor z−1

between plant and controller

• z−1 = 0 ⇒ z = ∞, an unstable pole

• If unstable pole-zero cancellation is forbidden while design-
ing controllers, z−1 cannot appear in the denominator of the
controller - i.e., controller is realizable
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15. Delay Specification for Realizability

Closed loop delay has to be ≥ open loop delay:

G(z) = z−kB(z)

A(z)
= z−kb0 + b1z

−1 + · · ·
1 + a1z−1 + · · ·

b0 6= 0. Suppose that we use a feedback controller of the form

Gc(z) = z−dS(z)

R(z)
= z−ds0 + s1z

−1 + · · ·
1 + r1z−1 + · · ·

with s0 6= 0 and d ≥ 0. Closed loop transfer function:

T =
GGc

1 + GGc
= z−k−d b0s0 + (b0s1 + b1s0)z

−1 + · · ·
1 + (s1 + r1)z−1 + · · · + z−k−d(b0s0 + · · · )

• Closed loop delay = k + d ≥ k = open loop delay.

• Can make it less only by d < 0, but controller is unrealizable.
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16. Example: Closed Loop Delay Specification

Design a controller for the plant

G = z−2 1

1− 0.5z−1

so that the overall system has smaller delay:

T = z−1 1

1− az−1

Recall the standard closed loop transfer function:

T =
GGc

1 + GGc
⇒

Solving for Gc, and substituting for T , G

Gc =
1

G

T

1− T
=

1

z−1

1− 0.5z−1

1− (a + 1)z−1

This controller is unrealizable, no matter what a is.
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17. Internal Model Principle

r(n) u(n)e(n)

−

y(n)
G(z−1) =

B

A
G

c
(z−1) =

S
c

R
c

v(n)

• α(z−1) = least common denominator of the unstable poles
of R(z−1) and of V (z−1)

• Let there be no common factors between α(z−1) and B(z−1)

• Can find a controller Gc(z) for servo/tracking (following R)
and regulation (rejection of disturbance V ) if Rc contains α,
say, Rc = αR1:

r(n)

−

e(n) u(n) y(n)
G

c
=

S
c

R 1

G =
B

A

v(n)

1

α
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18. Internal Model Principle - Regulation

r(n)

−

e(n) u(n) y(n)
G

c
=

S
c

R 1

G =
B

A

v(n)

1

α

Y (z−1) =

S

R1

1

α

B

A

1 +
S

R1

1

α

B

A

R +
1

1 +
S

R1

1

α

B

A

V

=
SB

R1Aα + SB
R +

R1Aα

R1Aα + SB

bV

αaV

• Unstable pole present in α gets cancelled

• Regulation problem verified
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19. Internal Model Principle - Servo

r(n)

−

e(n) u(n) y(n)
G

c
=

S
c

R 1

G =
B

A

v(n)

1

α

Y (z−1) =
SB

R1Aα + SB
R +

R1Aα

R1Aα + SB
V

Servo problem: assume V = 0:

E(z−1) = R(z−1)− Y (z−1)

=

(
1− SB

R1Aα + SB

)
R =

R1Aα

R1Aα + SB

bV

αaV

• Unstable poles of R are cancelled by zeros of α.

• Can choose R and S such that R1Aα+SB has roots within
the unit circle (pole placement)

• IM Principle: unstable poles of V , R appear in loop thro’ α
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