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Modulating the dynamics of NFκB and PI3K enhances the
ensemble-level TNFR1 signaling mediated apoptotic response
Shubhank Sherekar 1, Chaitra S. Todankar1 and Ganesh A. Viswanathan 1✉

Cell-to-cell variability during TNFα stimulated Tumor Necrosis Factor Receptor 1 (TNFR1) signaling can lead to single-cell level pro-
survival and apoptotic responses. This variability stems from the heterogeneity in signal flow through intracellular signaling entities
that regulate the balance between these two phenotypes. Using systematic Boolean dynamic modeling of a TNFR1 signaling
network, we demonstrate that the signal flow path variability can be modulated to enable cells favour apoptosis. We developed a
computationally efficient approach “Boolean Modeling based Prediction of Steady-state probability of Phenotype Reachability (BM-
ProSPR)” to accurately predict the network’s ability to settle into different phenotypes. Model analysis juxtaposed with the
experimental observations revealed that NFκB and PI3K transient responses guide the XIAP behaviour to coordinate the crucial
dynamic cross-talk between the pro-survival and apoptotic arms at the single-cell level. Model predicted the experimental
observations that ~31% apoptosis increase can be achieved by arresting Comp1 – IKK* activity which regulates the NFκB and PI3K
dynamics. Arresting Comp1 – IKK* activity causes signal flow path re-wiring towards apoptosis without significantly compromising
NFκB levels, which govern adequate cell survival. Priming an ensemble of cancerous cells with inhibitors targeting the specific
interaction involving Comp1 and IKK* prior to TNFα exposure could enable driving them towards apoptosis.
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INTRODUCTION
Apoptotic response is a key outcome of Tumor Necrosis Factor
Receptor 1 (TNFR1) signaling triggered by TNFα, a pleiotropic
cytokine secreted by variety of immune cells in large quantities in
several tissue microenvironment1. While normal cells maintain a
balance between pro-survival and apoptotic phenotypic
responses due to TNFα2,3, diseased ones such as those of certain
cancer tissues favor proliferation by evading apoptosis and the
strong host immune response4,5. However, counter-intuitively,
certain tumors have higher sensitivity to apoptosis than the
corresponding normal tissue6,7. Cells modulate the dynamic cross-
talk between various intracellular entities wired in an underlying
molecular machinery for maintaining this balance8. A detailed
understanding of the causal mechanisms governing these
dynamic cross-talks currently remains elusive, especially when
inherent cell-to-cell variabilities leading to heterogeneous
responses are present. Such an understanding is necessary to
identify the targets for interventional therapeutic strategies for
tilting the phenotypic balance towards cell-death without
adversely affecting the otherwise normal functioning of an
ensemble of cells. For instance, a population of malignant cells
may be suitably primed to favor TNFR1 signaling mediated
apoptotic outcome over a pro-survival response.
Activated NFκB is a key molecular player during TNFR1 signaling

due to its ability to directly modulate both pro-survival and
apoptotic responses9–12. NFκB regulates its own activity via
different feedback loops involving IκB* and A20, both of which
are transcribed by NFκB13,14. A20 not only regulates NFκB but also
deubiquitinates RIPK1 and thereby favors apoptosis by curtailing
signals to the necroptosis mode of cell-death15. On the contrary,
pro-survival markers such as PI3K16, IKK*17, cIAP18, XIAP19, BCL –
220, directly or indirectly inhibit Caspase3, a precursor for cell-
death21,22. Signal flow through a cell during TNFR1 mediated pro-
survival and apoptotic responses is coordinated by the cross-talks

between pathways involving these key regulators23. Thus,
unravelling the causal mechanisms governing the dynamic
signaling cross-talk between these pathways while accounting
for cell-to-cell variability requires a detailed investigation of the
signal flow through the TNFR1 signaling network.
Discrete model of TNFR1 network led to unveiling the

checkpoints regulating apoptosis such as ubiquitination in
membrane bound Complex – I, which consists of TRADD, RIPK1,
TRAF, and cIAP1/222,24. Modulating this checkpoint by arresting
the activity of TAK1, which mediates the interaction between IKK*

and Complex – I, permits promoting apoptosis by downregulating
the NFκB levels25,26 and regulating Compex–II, which consists of
RIPK1, FADD, and Caspase827. These studies account only for
population-averaged behavior and therefore cannot directly offer
insights into the cell-to-cell variability driven dynamic cross-talk
between pro-survival and apoptosis arms of the network.
Cell-to-cell variability causing an ensemble-level behavior can

influence the signal flow through every cell in a population28–31. The
sources for variability during TNFR1 signaling range from protein
abundances32 to cell-cycle effects33 to heterogeneity in pathway
responses34. Besides, the correlation between the information
exchanged during cross-talk across different signaling pathways can
also contribute to the overall network variability35. Signaling networks
usually have multiple pathways culminating in a phenotype. As a
result, cells adopt different signal flow paths for committing to
different cell-fates36. The sources for variability considered so far do
not account for signal flow variability during TNFR1 signaling which is
needed to mimic the natural heterogenous cellular response.
Therefore, introducing signal flow variability while modeling single-
cell level TNFR1 signaling response permits reliable identification of
the governing principles behind the phenotypic heterogeneity.
Discrete modeling approaches such as Boolean Dynamic (BD)

framework are amenable to study large-scale networks37. Petri-net25

and the multivalued Boolean model38 of TNFR1 signaling network
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revealed that regulation of NFκB by inhibition of Complex–I and of
XIAP, respectively could modulate the cell-fate. The synchronous
updating method of BD simulations employed in these studies are
inherently deterministic in nature and therefore cannot account for
heterogeneity in the phenotypic response, typically observed in an
ensemble of cells39. Boolean model of TNFR1 network accounting
for the inherent stochasticity using general asynchronous (GA)
update scheme40 enabled distilling out the role of RIPK1 in cell-
death41. GA scheme, though widely adopted for modeling signaling
cross-talk in the presence of heterogeneous responses41–43, can
generate spurious signal flow paths of the network. Another
promising approach is the probabilistic generalization of the BD
modeling44,45. In these approaches, challenge lies in mimicking the
Boolean functions by a continuous probability framework that
hinges on the approximation of the logics44 and on network
partitioning45, errors in which can result in severe information loss.
An appropriate approach for quantifying a biological network’s
phenotype reachability must therefore account for signal flow
variability while minimizing spurious signaling paths, which can be
achieved by using Random order asynchronous (ROA) update
scheme based BD simulations.
The goal of this study is to unravel the causal mechanisms

governing the dynamic cross-talk between pro-survival and
apoptotic pathways that regulate the cell-to-cell signal flow
variability guided TNFR1 signaling mediated heterogeneous cell-
death response. In order to achieve this goal, we develop a
Boolean dynamic (BD) model of a TNFR1 network that accounts
for the cell-to-cell signal flow variability via the ROA updating
scheme. We corroborate the model predictions with the experi-
mental apoptotic phenotypic outcome exhibited by TNFα
stimulated U937 and Jurkat-T cells, which respectively are pro-
monocytic lymphoma and T-lymphocyte cell lines. We propose a
Boolean Modeling based Prediction of Steady-state probability of
Phenotype Reachability (BM-ProSPR) algorithm for systematic
analysis of the BD model and also reliable quantitation of the
network’s reachability to multiple phenotypes. We show that TAK1
inhibition can enable phenotype switching from pro-survival to
apoptosis in the model cell lines considered. In particular, we
show that, in the presence of cell-to-cell variability, TAK1 inhibition
modulates the dynamic signaling cross-talk involving NFκB and
XIAP to regulate apoptosis.

RESULTS
TNFα induced ensemble-level apoptotic response
We consider TNFα driven ensemble-level apoptotic response in
U937 and Jurkat-T model cell lines. We experimentally measured

the steady-state percentage of cells resulting in apoptosis (Fig. 1)
following exposure to 100 ng/ml TNFα (Methods and Supple-
mentary Note 1.1). (The four-quadrant plots tracking different
U937 and Jurkat-T cell states are in Supplementary Fig. 1.) While
~28% of the U937 population culminated in apoptosis, only ~13%
of Jurkat-T cells exhibited cell-death (Fig. 1). Both U937 and Jurkat-
T cells exhibited insignificant TNFα stimulated necrosis population
(Supplementary Fig. 1, quadrant Q1)). Hence, unless otherwise
stated explicitly, we restrict the definition of cell-death to
apoptosis only. This indicates that the TNFα stimulation increases
apoptosis but pro-survival response is dominant in both U937
(~72%) and Jurkat-T cells (~87%). This raises a question as to can
these cells be primed to favor the ensemble-level apoptosis
outcome in response to TNFα exposure and if so, what the targets
are. Targets such as TAK127,46 and SMAC mimetics47 to enable
population-averaged signaling leading to cell-death response
have been identified in literature. However, whether these targets
are likely to modulate the ensemble-level signaling to offer
improved TNFα mediated apoptosis response remains unclear.
Identifying the extent of apoptosis modulation these targets can
offer while accounting for the ensemble-level behavior requires a
detailed model analysis of the signal flow through the TNFα
stimulated TNFR1 signaling network to pro-survival and cell-death
phenotypes. Moreover, unravelling the cross-talks between the
phenotypes in the presence of the cell-to-cell signal flow
variability may enable finding mechanisms suitable for the
ensemble-level response.
We manually curated a molecular wiring diagram of TNFR1

signaling originating from TNFα and leading to apoptosis (Fig.
2)1,36,38,41,48. Fas Ligand (FasL), a TNF superfamily ligand, too leads
to a strong apoptotic response via Fas receptor49. Since Fas
mediated signaling shares majority of the death signal pathways
in TNFR1 network, we considered apoptotic response originating
from FasL as well for benchmarking purposes (Fig. 2). Note that
since U937 and Jurkat-T cells show insignificant necrosis mode of
cell-death, the corresponding signaling pathways were not
included in the network. The signaling network consists of N =
40 entities and 62 causal interactions connecting them. (A detailed
description of the network construction and the nature of the
interactions along with a list of entities is in Supplementary Notes
1.2 and 1.3.) We classify these entities into 9 housekeeping (H), 2
input (I), 27 signaling (S) and 2 output (O) nodes (Supplementary
Table 1). These 9 nodes classified as housekeeping nodes are
constitutively present irrespective of any stimulation and also are
present in abundance. Note that the levels of these nodes remain
nearly constant under resting conditions in different mammalian
tissues (Supplementary Table 1). Signaling nodes transduce signal

Fig. 1 Phenotype responses following TNFα stimulation. Steady-state TNFα mediated pro-survival and apoptosis responses in A U937 and
B Jurkat-T cells for basal (no stimulation) and 100 ng/ml TNFα stimulation cases. The four-quadrant plot capturing different U937 and Jurkat-T cell
states under these conditions are in Supplementary Fig. 1. Error bars represent mean ± standard deviation across three independent replicates.
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flow from the input (TNFα or FasL) to output nodes (pro-survival
represented by NFκB and Apoptosis).

Boolean Dynamic model of the TNFR1 signaling network
permits stochastic phenotypic response
We quantify the inactive (OFF) or active (ON) forms of a node i by
the Boolean variable vi ¼ 0 or 1, respectively. Note that
vj ¼ 1 8j 2 H. The network’s eventual response can be either
apoptotic, pro-survival or anti-apoptotic phenotype depending
upon the different combinations of the active/inactive form of the
output nodes (Table 1). In Boolean dynamic (BD) framework, the
logic of the causal interactions between the entities specifies the
Boolean functions f i corresponding to a signaling/output node i37.
For example, the Boolean function capturing the activation of
entity c8* by c8*–DISC in the absence of FLIP or by c8*–Comp2 is
specified by

f c8� vð Þ ¼ vc8��Comp2

��ðvc8��DISC & � vFLIPð ÞÞ (1)

where, set v ¼ fvi ; 8ig captures the instantaneous state of the
network mimicking that of a cell. Note that in Eq. (1), &, | and ~,
respectively represent AND, OR and NOT logic. While v is in
general an unordered set, for ease of representation and analysis,

we place them in a specific order: 9H, 2I, 27S, 2O (Supplementary
Table 1). Logic adopted for the interactions are incorporated in 29
node-specific Boolean functions corresponding to the signaling/
output entities (Supplementary Note 1.3). Logic for every
interaction was assigned based on the manually curated informa-
tion pertaining to the underlying causality, details of which are in
Supplementary Note 1.3.
We first reduce the dimensionality of the network using a partial-

Logical steady state analysis (pLSSA)50 (Methods; Supplementary
Note 1.4). For e.g., vTNFα ¼ 1 implies vTNFR1 ¼ vComp1 ¼ 1 indicating
that Comp1 value is fixed irrespective of the dynamics of the rest
of the network (Supplementary Table 3). Under TNFα stimulation
conditions, pLSSA led to fixing the Boolean values of 10 signaling
nodes, viz., TNFR1, Comp1, Comp2, c8*–Comp2, Fas, DISC,
c8*–DISC, c8*, cIAP1/2*, c3*–p20, and thereby resulting in N=19
dynamically varying signaling/output entities. Note that the value
of these “fixed nodes” (listed in Supplementary Table 3) remains
unchanged even if that of the remaining entities vary dynamically.
While several studies in literature have modeled

TNFR1 signaling mediated cell-death using BD
approaches10,25,38,41, these do not account for stochasticity caused
by the cell-to-cell signal flow variability. We account for the cell-to-
cell variability in signal flow by introducing the stochastic behavior
due to interdependency of the nodes at all update steps via the
random order asynchronous updating scheme, henceforth
referred to as ROA40,51. Starting from a randomly chosen initial
state v0, we perform BD simulations of the network using ROA till
a fixed-point attractor (FP) is reached and thereby track the
corresponding signal flow path from v0 to the FP37,40. (Note that in
this study we only consider those absorbing states which are FPs.)
Values of vApoptosis and vNFκB that specify the three phenotypes are
in Table 1.
A directed one step state-transition between two consecutive

states in a signal flow path is obtained by evaluating the Boolean
functions of the dynamically varying entities. An input condition-
and Boolean function-specific state transition graph (STG), whose
state-space R consists of 2N states, is a collection of all directed
signal flow paths to various FPs from any vo. The choice of random
sequence of Boolean function evaluation at every transition
introduces the signal flow path variability to reach a FP from an
initial state. Thus, reaching an FP via a signal flow path strongly
hinges on the permutations that specify this random sequence at
every state-transition involved (Methods).
TNFR1 network (Fig. 2) stimulated with TNFα can lead to only

two FPs, viz., pro-survival FP vFP1 = {9H}{2I}{27S}{2O}
=1111111111011110001110101111100010111110 and apoptotic
FP vFP2= 1111111111011110001111010000011100000001 (Meth-
ods; Supplementary Note 2.1) where entities corresponding to
those underlined digits are pLSSA-fixed. FPs for basal (no
stimulation) and for FasL stimulation are in Supplementary Fig.
2. Starting from an initial state v0 =
1111111111011110001110000000000000001100, chosen uni-
formly randomly, reaching either vFP1 or vFP2 depends upon the
signal flow paths dictated by the chosen permutations (Fig. 3 and
Supplementary Note 2.2). There could be several such signal flow
paths leading to a certain FP from an initial state. Since the
stochasticity in phenotypic response originates from signal flow
path variability, knowledge of these will enable computing the
absorption probability pv

FP with which the network would reach a
FP starting from a state v. The absorption probability p due to
Markov-chain random walk on the state transition graph is
computed by tracking all signal flow paths from an initial state to
an attractor. Stimulation condition-specific steady-state probabil-
ity PFP1ss of the TNFR1 network to settle into FP1 is given by

PFP1ss ¼
P

8 vi2R pvi
FP1P

8 vi2R 1
(2)

Fig. 2 TNFR1 signaling network. Entities in pink, yellow, green and
purple, respectively represent housekeeping, input, signaling and
output nodes. Black arrows and red hammers capture the activation
and inhibitory interactions. Detailed description of the network
along with the node-specific Boolean functions are in Supplemen-
tary Notes 1.2 and 1.3.

Table 1. Phenotypes permitted by the TNFR1 signaling network (Fig.
2) and the conditions that specify them.

Apoptosis
NFκB

Inactive (0) Active (1)

Inactive (0) Anti-apoptotic Apoptotic

Active (1) Pro-survival –

Values inside a bracket indicate the Boolean value taken by the output
nodes Apoptosis and NFκB.
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Note that PFP1ss specifies the fraction of a population of cells
exhibiting the phenotype FP1. Computing p requires reliable

estimation of the state transition matrix (M) whose elements
specify the transition probability between any two states in the
STG given by

Mij ¼ zij
qmax

¼ zijP
8i;j zij

(3)

where, zij is the number of permutations causing the transition
from state i to j, and qmax is the maximum possible permutations.
Quantifying M for TNFα stimulated pLSSA-fixed network (Fig. 2)

consisting of N ¼ 19 dynamically varying entities demands
2N ´N ! ´N (no. of states × no. of permutations/state × no. of
Boolean function evaluations/permutation) = ~1.2 × 1024(Unless
otherwise stated explicitly, henceforth, TNFR1 network refers to the
pLSSA-fixed one.) Note that the number of function evaluations
increases exponentially with N (Supplementary Fig. 3 and Supple-
mentary Note 2.3). Moreover, every function in turn has embedded in
it a complex set of Boolean operations dictated by the network
wiring. Therefore, computingM even for a reasonably sized network is
prohibitively expensive, in spite of the network dimensionality
reduction. Approaches for computing M so far relied primarily on
employing a smaller state space and arbitrarily chosen significantly
smaller number of permutations52. Employing the entire state space
only can offer reliable prediction of the absorption probabilities, and
thereby the ability of the network to settle into a phenotype. Thus,
there is a clear need for a BD modeling approach using ROA that
considers all 2N states in the STG.
We posit that many chains of permutations could lead to identical

signal flow paths, that is, those consisting of the same set of
intermediate states in the STG constructed using all 2N states. We
hypothesize that it is possible to judiciously consider only a certain
randomly chosen fraction of maximum possible permutations qmax

and yet compute a partial STG whose state transition matrix is
equivalent to that of a complete STG. Note that the partial STG thus
arrived will still contain all 2N states in the state space. In the next
section, we develop and benchmark a systematic algorithm to
identify the fraction of qmax that can reliably quantitate the (partial)
state transition matrix M, dimensions of which being (2N ; 2N ) and
subsequently, implement it on TNFR1 network to unravel the effect
of signal flow variability on phenotypic heterogeneity.

Boolean Modeling based Prediction of Steady-state
probability of Phenotype Reachability (BM-ProSPR)
The goal of BM-ProSPR algorithm is to find PFPss of reaching
different FPs by estimating a reliable state transition matrix M
using a network-specific minimum number of permutations
ql � qmax. Flow chart capturing the systematic BM-ProSPR
algorithm is in Fig. 4. We first specify the network of interest
consisting of N nodes, the edges between the entities and the
node-specific Boolean functions (Step 1, Fig. 4). (Note that the

Fig. 3 Signal flow paths to fixed points. Absorption of the initial state v0 into two fixed points via distinct signal flow paths. The order in
which the Boolean values of the entities are placed in a state is housekeeping (H), input (I), signaling (S) and output (O) nodes. Entities
corresponding to the underlined values are pLSSA-fixed nodes. Blue arrows indicate one-step transitions with a certain permutation using
ROA. Permutation used are in Supplementary Note 2.2.

Fig. 4 Flow chart elucidating steps involved in BM-ProSPR. While
T andPR, respectively represent Temporality and PageRank measures,
D reflects the discordant PageRank fraction across successive
permutations. Aq and Mq, respectively are the adjacency matrix and
state transition matrix corresponding to the partial STG at the qth

permutation. ϵ1 and ϵ2 are the error thresholds. PFPiss is the steady-state
probability estimated using Mql at the required minimum number of
permutations ql . ROA update scheme was used in the BD simulations.
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proposed algorithm can be used for networks with or without
pLSSA-fixed nodes.) Next, starting with a null STG (S0) consisting of
2N isolated states and assuming an initial seed number of
permutations q ¼ q0 � 1, we construct a partial STG Sq0 (Step 2,
Fig. 4). The steps involved in this construction are in Table 2. After
constructing Sq0 , the associated state transition matrix Mq0 , where
Mq0

ij ¼ zij
q0

is computed.

Finding PFPss hinges on identifying the minimum number of
permutations ql < qmax such that Mql � Mqmax , the state transition
matrix of Sqmax . This implies that when q ¼ ql the corresponding
partial STG Sq must have sufficiently evolved to contain enough
number of directed links such that Sq mimics Sqmax . We assess the
extent of evolution of Sq by monitoring (i) the connectedness
between a pair of states and (ii) the number of permutations
causing one-step transitions between a pair of states (Step 3, Fig. 4).
First, we consider connectedness by tracking the fractional
increment in finding at least one directed link between a pair of
states resulting from the update due to the qth permutation. We
quantitate this fractional increment across permutation-driven STG
snapshots using a temporality measure53–55

Tq ¼ 1
q

Xq
k¼1

P
8i;j2R jak�1

ij � akij jP
8i;j2R akij

(4)

where, akij ¼ 1; if at least one link exists between i and j in Sk

0; otherwise

�
and |.|

represents mod. T is normalized and 0<Tq � 1; 8q, with
limq!qmax

Tq ! 0, indicating that the STG does not change any
further. Next, we quantify the number of permutations leading to
a transition between a pair of states by assessing the PageRank (
PR)56–58 of all v2R (Methods). (Details of the STG evolution
quantified by these measures are presented in Supplementary
Note 3.1) PR of all states in the null STG is 0. A comparison of the
histogram of the PR of all v 2 Sq and of those in STG Sqþ1 for the
next permutation can, at best, indicate a change in the topology.
However, it does not reveal how addition of a permutation led to a
change, if any in the rank order of the states. We track change in
this rank order by quantifying the discordance in PR following
introduction of a new permutation.
We next introduce conditions on T and PR for identifying ql

required to ensure sufficiency in the extent of evolution of the
partial STG (Step 4, Fig. 4). We set ql required for this sufficiency and
thereby, for Mql � Mqmax as that q which satisfies the conditions

Tq �Tq�1�� ��<ϵ1 (5)

and

Dq ¼ 1� τqð Þ
2

¼ Dq

Cq þ Dq <ϵ2 (6)

where, τq ¼ τqðPRq�1;PRqÞ is the Kendall’s-Tau rank correla-
tion59,60, and Dq and Cq, respectively capture the number of pairs
having dissimilar and similar rank-order in PRq with respect to
those in PRq�1 (Methods). Therefore, Cq þ Dq ¼ 2N�1 2N � 1

� �
(Supplementary Note 3.2). Note that Dq (Eq. 6) specifies the

fraction of pair of states having discordant PageRank across
successive permutations. Thus, D offers a rational comparison of
PR order achieved in successive permutations. We set the error
thresholds ϵ1 and ϵ2 in Eqs. 5 and 6, respectively by identifying the
value at which the absorption probability distribution saturates.
Conditions in Eqs. 5 and 6, respectively ensure that the fractional
increment of directed links in the STG and topological improve-
ment achieved beyond ql are insignificant. For a certain q, if Eqs. 5
and 6 are not satisfied, we introduce additional permutation(s)
and repeat Steps 2-4 (Fig. 4) until convergence is achieved. After
identifying ql , in Step 5 (Fig. 4), we estimate the steady-state
probability PFPiss (Eq. 2; Methods).
We systematically benchmarked BM-ProSPR using a 6-node

apoptosis network of T-cell Large Granular Lymphocyte (T-LGL)
cells42 permitting two phenotypes (FPs) (Supplementary Note 3.3)
and an 8-node network regulating the spinal cord ventrilization in
HEK293T61 permitting five phenotypes (Supplementary Note 3.4).
Based on a sensitivity analysis, we assigned a value of 1 ´ 10�4 for
both ϵ1 and ϵ2 for which the absorption probability distribution
saturates. (Details of the sensitivity analysis used to identify the
network-specific error threshold(s) along with an illustration are
presented in Supplementary Note 3.5.) The computationally tractable
complete STG for these two networks enabled validation of the
predictions by BM-ProSPR. The minimum number of permutations
required for construction of partial STG that results in accurate
steady-state probability for reaching multiple phenotype are 286±65
and 167±2 for the 6-node and 8-node networks, respectively
(Supplementary Note 3). Note that the number of permutations
required is only a (small) fraction of the total number of possible
sequences. In summary, we demonstrated that (a) temporality
measure quantifies the extent of evolution of the STG better even in
the absence of a complete one, which is typically the case for large
networks and thereby making it amenable for analysis any biological
system (Supplementary Note 3.3 and 3.4) and (b) BM-ProSPR
accurately predicts the absorption probabilities and thereby the
steady-state probability to reach multiple phenotypes.

NFκB and PI3K promote the TNFR1 signaling mediated pro-
survival response during TNFα stimulation
We next decode the signal flow paths facilitating TNFα mediated
apoptotic and pro-survival responses and analyze the transient
signaling behavior. After setting housekeeping nodes active,
vTNFα ¼ 1 and vFasL ¼ 0, we tracked the Boolean dynamics of the
19 dynamically varying entities of the TNFR1 signaling network
(Fig. 2) using BM-ProSPR. (Note that 10 other signaling nodes
attained pLSS (see fig. 3)). Only ql ¼ 219 (out of 19! ¼� 1:2 ´ 1017)
permutations were sufficient to construct the pSTG with 219 ¼
524288 states for the reliable estimation of the steady-state
probability of reaching the pro-survival (vFP1 ) and apoptotic (vFP2 )
attractors (Fig. 3). (BM-ProSPR implementation, the evolution of
the pSTG and associated details are discussed in Supplementary
Note 4.1) An implementation of BM-ProSPR algorithm on a
configuration model random network resulted in the minimum
number of permutations for constructing pSTG similar to that

Table 2. Steps involved in the construction of partial STG (Sq) at the qth permutation.

Steps involved in constructing Sq

a) Choose a state vi2R.

b) Choose a permutation from qmax ¼ N!.

c) Starting from vi , for the chosen permutation, identify the state ve reached after one BD simulation with ROA (Methods).

d) Update Sq with the one-step transitions between states vi and ve.

e) Repeat steps (b) to (d) for the remaining q-1 times while ensuring no redundancy in the permutation chosen in step (b) for a specific state vi
f ) Repeat steps (b) to (e) for all v2R.
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obtained for the TNFR1 network (Supplementary Note 4.2). This
suggests that the BM-ProSPR approach for construction pSTG
could be extended to any network, in general. Since the pSTG
corresponding to TNFα stimulation condition consists of only non-
terminating strongly connected components (SCCs), TNFR1 net-
work (Fig. 2) does not permit cyclic attractors40. Moreover, this
pSTG is dominated by a single SCC consisting of ~18.9±0.2%
states suggesting its importance in the network dynamics. A
rational comparison of the pSTG phenotype reachability predic-
tions with experimental measurements on U937 and Jurkat-T cell
lines requires incorporation of cell line specific information into
the BD model analysis. In these model cell lines, under resting
conditions, NFκB is bound to IκB� 13,62. Thus, for the rest of this
section, we consider only those signal flow paths in the pSTG that
originate from 131072 states with vNFκB ¼ 0 and vIκB� ¼ 1.
The overall dynamical behavior of the TNFR1 signaling network

(Fig. 2) is governed by the transient response of the nodes that it
consists of. We consider the transient response of NFκB, IκB� , PI3K
and c3� � p17. While NFκB and c3� � p17 are respectively direct
regulators of the pro-survival and apoptosis phenotypes, PI3K
modulates the signal flow to both NFκB and c3� � p17. On the
other hand, IκB� tightly controls the levels of NFκB. Deducing the
transient response of the nodes in BD modeling using ROA is non-
obvious. A signal flow path in the STG from a certain start state
having the ability to reach both attractors mimics the transient
behavior in a typical cell. We quantify the transient response of an
entity and the embedded variability using an approach of tracking
the variation of the node’s activity over the signal flow paths in the
STG. An update step, that is, pseudo-time step, causing a one-step
transition in the signal flow path qualitatively corresponds the real
time. In a signal flow path, after every pseudo-time step,
depending on the permutation considered, Boolean simulations
force a node (say NFκB) to either transition between ON and OFF
or maintain at ON/OFF level. Multiple signal flow paths connect a
start state v0 and the two attractors FP1 and FP2. At a certain
pseudo-time step t, the conditional probability ENFκB tð Þjv0 of node
NFκB to either transition to an active form or remain activated in
these multiple signal flow paths (from v0) indicates the extent of

instantaneous participation of NFκB in the signaling process in a
cell with the initial condition v0. Thus, ENFκB tð Þjv0 over all the
pseudo-time steps mimics the transient activity of NFκB measured
experimentally in a single-cell exposed to TNFα. We define this
conditional probability of finding NFκB being active at an update
step t as the fractional overall number of permutations (in the tth

step) across all signal flow paths wherein the associated one-step
transitions either cause an activation of NFκB or maintain it
activated. A collection of the pseudo-time step varying conditional
probability over all start states in the STG qualitatively captures
the ensemble-level NFκB dynamics in a BD framework. Details of
the procedure adopted for computing the ensemble-level
dynamics of a node and an illustration of the same are
respectively in Methods and Supplementary Note 4.3.
We next compare the BD modeling predicted dynamics of the

conditional probability of certain nodes such as NFκB, IκB�, PI3K
and c3� � p17 being active (Fig. 5A–D) contrasted with corre-
sponding experimental observations (Fig. 5E–H) reported in
literature in U937 or equivalent cell lines8,63. Even though the
update step and the sampling times are not directly comparable,
we align the pseudo-time of the BD simulations by contrasting the
undulations in the ensemble-averaged ENFκB tð Þ trajectory with
that reported in experimentally measured NFκB transients. We
then fixed this update step and real-time mapping for the
dynamics of the entities considered. We then juxtapose the model
predicted ensemble-level dynamics and the experimentally
measured population-averaged transients for NFκB, IκB�, PI3K
and c3� � p17 in Fig. 5 to contrast the nature of undulations,
phase-lag and the steady-state levels. Note that cloud (Fig. 5A–D,
pink) around the population-averaged transients (Fig. 5A–D, red)
encompasses the dynamics from individual start states of the STG.
Comparison of the representative model predicted transients (Fig.
5A–D dashed blue) with the experimentally measured dynamics
(Fig. 5E–H) showed that the model predicted the number of crests
and troughs exhibited in the NFκB transients. The model
simulated ensemble-averaged IκB� transient compared with that
of NFκB clearly shows these two are out-of-phase with each other
(Fig. 5A,B), as observed in the experimental population-averaged

Fig. 5 Ensemble level dynamics of key intracellular signaling entities. Model-predicted transients of the conditional probability A ENFκB , B
EIκB� , C EPI3K and D Ec3��p17, respectively of the nodes NFκB, IκB�, PI3K, and c3� � p17 being active at an ensemble-level (Methods). Cloud
around the population-averaged response (red) captures the range for different transients achieved from various start states of the STG that are
capable of reaching both phenotypes. Dynamics of E NFκB, F IκB�, G PI3K/AKT and (H) caspase-3. While NFκB transients are in mouse fibroblast
cells treated with TNFα 63, those of PI3K/AKT and Caspase3 are in TNFα stimulated U937 cells8. Note that response of c3� � p17 in the network
mimics that of Caspase3 in a cell. The update steps in the Boolean simulations are equated to the experimental sampling time by qualitatively
aligning the undulations in NFκB transients. Blue dashed line captures the trajectory from a randomly chosen start state. For each of the model
cases in (A) to (D), trajectories having the same trend as measurements are presented in Supplementary Fig. 13 in the form of a cloud.
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measurements (Fig. 5E,F). While the model predicts that both
NFκB and IκB� settle to higher and lower levels, respectively at the
fourth pseudo-time point, measurements show this trend only for
NFκB. The discrepancy between the model predicted and
experimental measurements of IκB� transients could be attributed
to the inability to account for the strong temporal kinetic control
present in the cells in the BD framework. The stimulated TNFR1
network may have a higher chance of favoring a pro-survival
response in the initial phase (<3) owing to high probability of
NFκB being active (Fig. 5A) along with PI3K concomitantly
showing an increasing trend after the first step (Fig. 5C). (Note
that PI3K levels in the very early phase (1st pseudo-time point)
decreases rapidly as compared to experimental observations. This
can be reconciled by considering those states having NFκB ¼ 1
(see Supplementary Fig. 13B).) In the initial phase, the negative
regulators of NFκB could be response for the probability of finding
NFκB being active in the individual trajectories to hover around
the ensemble-average indicating moderate cell-to-cell variability.
On the contrary, PI3K permits wider range for the cell-to-cell signal
flow variability in the early phase. Moreover, in the early phase, a
large cell-to-cell variation present in c3� � p17 transients indicates
that some start states may drive the network towards apoptosis
(Fig. 5D). However, eventually, in the late-phase (>6 timesteps)
probability that NFκB will be active settles down to ~0.64 for all
start states considered (Fig. 5A). This indicates that major fraction
(~64%) of the signal flow paths from various start states are likely
to favor pro-survival response, which requires NFκB to remain
active. Concomitantly the probability of c3� � p17 being active
decreases to <0.5 in the late-phase indicating that TNFα
stimulation is unlikely to result in a strong apoptotic response
(Fig. 5D). Transients of PI3K and c3� � p17 are out of phase in the
very early phase (1st update step). On the contrary, in the late-
phase Ec3��p17ðtÞ being in-sync with EPI3KðtÞ suggests that the
fraction of cells taking apoptotic phenotype maybe regulated by
PI3K via Bax (Fig. 5C,D). The decision to attain a phenotypic
response is made due to changes in activity of nodes in the initial
phase.
In order to assess the extent to which TNFα mediated pro-

survival response is orchestrated by the TNFR1 network (Fig. 2), we
computed pv

FP1
¼ 1� pv

FP2
8v 2 R (Methods). Distribution of

pv
FP1

shows that only 3.125% of the states belonged only to the
apoptosis basin of attraction BFP2 and clearly indicates that a pro-
survival response is favoured (Fig. 6). Moreover, there are no states
exclusively favoring the pro-survival response. (Note that pro-

survival response is favored under no stimulation (basal) condi-
tions as well (Supplementary Fig. 14).) The steady-state probability
PFP2ss ¼ 1� PFP1ss (Eq. 2) of the network reaching apoptosis attractor
under TNFα stimulation and basal conditions respectively are
~0.34 and ~0.04. Note that this trend of pro-survival response
being a dominant response is in line with the phenotypic
observations for U937 and Jurkat-T cells (Fig. 1). This shows that
the dynamics of NFκB, PI3K and c3� � p17 being active (Fig. 5)
clearly reflects the pro-survival response being the dominant
outcome of the TNFα stimulated TNFR1 network.
In summary, NFκB, PI3K and c3� � p17 transients extracted from

the Boolean dynamics contain strong signatures of the TNFα
stimulated TNFR1 network favoring pro-survival phenotype over
cell-death at the single-cell level. This leads to a question as to
what governs a cell to favor TNFR1 signaling mediated pro-
survival phenotype. Further, can the signal flow through pro-
survival pathways and specifically those involving NFκB be
modulated to enable phenotype switching from pro-survival to
apoptosis at the single-cell level?

Comp1-IKK* activity reduction enables pro-survival to
apoptosis phenotype switching
Modulation of the signal flow through a pathway can be achieved
by either suppressing the activity of a node or the action of an
important interaction in such a manner that it does not hamper
the otherwise normal functioning of the network. We identify such
a target by analyzing the signal flow paths in the pSTG consisting
of all the 524288 ð¼ 219Þ states. We enumerated the frequency of
occurrence of a Boolean value (0 or 1) taken by nodes in the
4096 states that exclusively belonged to BFP2 . In all these states,
Boolean value of 7 nodes, viz., Comp1� IKK�, IκB�, IKK�, PI3K,
NFκB, Raf1 and BCL-2 (Table 3A), which are locked in nested loops
(Fig. 7A), were the same. Note that the locking of Boolean values
of these subset of nodes occurs only in ~0.8% of states. This
suggests the strong presence of cell-to-cell signal flow variability
while starting from a significant number of states in the STG.
Signal flow towards apoptosis phenotype necessitates arresting of
NFκB along with other 5 nodes as it inhibits cell-death via multiple
pathways such as those involving BCL-2, XIAP, FLIP (Fig. 2). IκB�

accumulates in the absence of BCL-2 which prevents NFκB activity
(as noted in Supplementary Note 1.2). Absence of active PI3K and
Raf1 results in lack of activation of IKK�, and therefore the
inhibitory action on IκB� is absent64–66, and thereby preventing
NFκB activation causing arrest of signal flow towards pro-survival
phenotype (Fig. 1)67,68. However, the states having all Boolean
value combinations for these seven nodes other than that
specified in Table 3A will belong either exclusively to pro-
survival basin of attraction BFP2 or to both BFP1 and BFP2 . States
with 16 (=24) out of the 127 other combinations of the values of
these 7 key nodes belong exclusively to the BFP1 (Table 3B).
(Note that the remaining 111 combinations have
0<pFP1

¼ ð1� pFP2
Þ< 1.) In all these 16 states, IκB� takes an

inactive form and thereby permitting activation of NFκB leading to

Fig. 6 Absorption probability distribution. Histogram of the
fraction of states reaching pro-survival FP (FP1) with a certain
absorption probability pv

FP1
.

Table 3. Combination of Boolean values taken by the 7 key nodes in
the states that belong exclusively to either (A) apoptosis or (B) pro-
survival attractors.

Comp1� IKK� IκB� IKK� PI3K NFκB Raf1 BCL� 2

Apoptosis attractor (FP2)

0 1 0 0 0 0 0

Pro-survival attractor (FP1)

X 0 X X 1 X 1

Note that X refers to the value being either 0 or 1.
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pro-survival response. Since inhibitory action on IκB� is via either
IKK� or Comp1� IKK� or BCL-2 (Fig. 2), BCL-2 taking a Boolean
value of 1 (active) along with active NFκB is sufficient to maintain a
pro-survival response (Fig. 2). But, modulating BCL-2 alone may
not shift the signal towards apoptosis. States belonging exclu-
sively to BFP1 can therefore have either active or inactive
Comp1� IKK�. Thus, these 7 nodes locked in the nested loop
regulate the cross-talk signaling between the pro-survival and
apoptotic responses in the presence of cell-to-cell signal flow
variability. We therefore ask a question if tweaking of this nested
loop increases the chances of TNFα mediated apoptosis in a
heterogeneous cell population. This requires modulation in signal
flow inside this loop that could enable switching of phenotype,
specifically from pro-survival to apoptotic response.
Switching of pro-survival to apoptotic phenotype can be

enabled by either (i) shifting an initial state exclusively in the
BFP1 to BFP2 or (ii) increasing the absorption probability of an
initial state to a desired FP. While the former will require
simultaneous fixing of the Boolean values of the 7 cross-talk
regulating nodes (Table 3A), the latter can be achieved by
modulating a single entity. Since tweaking multiple nodes
simultaneously could be detrimental especially shutting down
NFκB completely, we consider increasing the absorption
probability.
We analyzed the signal flow paths culminating into FP2 and

identified that knocking-off Comp1� IKK� could facilitate tilting
the cell-fate towards apoptosis (Supplementary Note 4.6). Since
Comp1� IKK� formation is mediated by TAK169,70, signal flow
through this complex can be modulated by inhibiting TAK1. Use of
TAK1 inhibition to promote TNFα mediated apoptosis has been
demonstrated previously under population-averaged measure-
ments46. Moreover, TAK1 inhibition can promote apoptosis either
by reducing NFκB activity71 or by regulating signaling through
RIPK1-FADD-Caspase8 pathway27. Since necrotic mode of cell-
death seldom occurs in the cell lines considered (Fig. 1 and
Supplementary Fig. 1), as noted in earlier section, arresting signal
flow through RIPK1-FADD-Caspase8 pathway to promote apopto-
sis is highly unlikely. Therefore, the NFκB dependent mechanism
of promoting TNFα mediated cell-death under TAK1 inhibition is
in action in Jurkat-T and U937 cells. While these studies have
considered population-averaged level approaches, what will be
the extent to which modulation of the cross-talk can enable a shift

in the TNFα mediated apoptosis response, in the presence of cell-
to-cell signal flow variability, remains unclear.
In order to unravel this, we created a perturbed TNFR1 network

(henceforth referred to as TNFR1Δ) wherein Comp1� IKK� node is
turned-off by setting f Comp1�IKK� ¼ 0 throughout the simulations.
BM-ProSPR implemented on TNFα stimulated TNFR1Δ (Supple-
mentary Note 4.1) predicted that the steady-state probability of
reaching apoptosis attractor is 0.44. (Note that setting
f Comp1�IKK� ¼ 0 will halve the number of states with NFκB ¼ 0
and IκB� ¼ 1 to 65536). In order to validate this prediction, we
experimentally measured the apoptosis fraction in U937 and
Jurkat-T cells pre-treated with EDHS-20669, an inhibitor of TAK1
and subsequently exposed to 100ng=ml TNFα (Methods; Supple-
mentary Note 4.7). Pre-treatment with TAK1 inhibitor for 1 h
causes a significant reduction in the Comp1� IKK� activity69. Note
that both Jurkat-T and U937 cells treated with EDHS-206 for
extended duration exhibited same viability as that observed for
the basal (unstimulated) case (Supplementary Note 4.7). In order
to contrast the model predictions with the experimental
measurements, we define a fold-change F quantifying the effect
of the Comp1� IKK� perturbation on apoptosis reachability given
by

F¼ PFP2ss TNFR1Δ
� �� PFP2ss basalð Þ

PFP2ss TNFR1ð Þ � PFP2ss basalð Þ ¼ %Apoptosis TNFR1Δ
� ��%Apoptosis basalð Þ

%Apoptosis TNFR1ð Þ �%Apoptosis basalð Þ
(7)

where, PFP2ss TNFR1Δ
� �

and PFP2ss TNFR1ð Þ respectively are the steady-
state probabilities of reaching cell-death by TNFα stimulated
TNFR1Δ and TNFR1 networks. PFP2ss basalð Þ is the steady-state
probability of the unstimulated TNFR1 network to reach FP2. Fold-
change F computed using the model simulations and estimated
from experimental observations for both Jurkat-T and U937 cells
are contrasted in Fig. 7B. The BD model of TNFR1Δ was able to
predict the fold-change reflecting the increased apoptotic
response exhibited by both Jurkat-T and U937 cells under reduced
Comp1� IKK� activity. This shows that inhibiting TAK1 is a
promising strategy to tilt the phenotypic response from pro-
survival to apoptosis in the presence of cell-to-cell signal flow
variability as well. We reason that this predictive ability is due to
the effect of Comp1� IKK� perturbation on the absorption
probabilities, as captured by the Δp ¼ pv

FP2
ðTNFR1ΔÞ �

pv
FP2

ðTNFR1Þ (Fig. 7C). Lack of the activity of Comp1� IKK� has

Fig. 7 Phenotype switching from pro-survival to apoptosis. A Nested loop formed by the 7 key nodes regulating the signaling cross-talk to
TNFR1 signaling mediated apoptosis response in the presence of cell-to-cell signal flow variability. Note that IKK (pink box) is a housekeeping
node and Comp1 is pLSSA-fixed node. B A comparison of model predicted and experimentally measured apoptosis fold change obtained
under TAK1 inhibitory conditions. While this inhibitory action in U937 and Jurkat-T cells was achieved using EDHS-206 chemical inhibitor
(Methods), correspondingly Comp1� IKK� inactivation in the model simulations mimicked TAK1 inhibition. Error bar in the model case
captures mean ± standard deviation across 50 STG reconstructions. Error bars in cell line cases capture mean ± standard deviation across three
independent replicates. C Cumulative distribution of the fraction of states with difference in the absorption probability (Δp) in the presence
and absence of Comp1� IKK�. Note that the errorbars on the distribution capture the standard deviation over 50 STG reconstructions. Signal
flow paths from those states with vNFκB ¼ 0 and vIκB� ¼ 1 were considered to estimate F (Model) and Δp in B and C, respectively.
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resulted in ~88% of the states exhibiting increased ability to settle
into apoptosis (Fig. 7C), while the Δp ¼ 0 for the remaining states.
Notably, on an average, ~20% of the states showed greater than
10% increase in the probability of settling into apoptosis.
An increase in the ability of a state to settle into apoptosis

attractor in TNFR1Δ is due to the re-wiring of the dynamic path
taken by it to reach the attractor, resulting in a shift in the signal
flow paths. An illustration of the signal flow path alteration caused
by the perturbation is in Supplementary Note 4.6. Such shifts will
occur at several one-step transitions in the STG. This can be
tracked by following the effect of shutdown of Comp1� IKK� on
the Boolean dynamics of the key signaling nodes that enable
cross-talk between the pro-survival and apoptosis arms of TNFR1
network. For this purpose, we randomly chose a STG reconstruc-
tion for the TNFα stimulated TNFR1Δ in which 8282 states
exhibited more than 10% increase in absorption probability to
reach apoptosis FP. Using these as the start states, we estimated
ΔE tð Þ ¼ ðETNFR1Δ tð Þ �ETNFR1 tð ÞÞ=ETNFR1 tð ÞÞ for NFκB, IκB�, BCL-2,
XIAP, Bax and c3� � p17 being active following shutdown of
Comp1� IKK� activity. Inhibition of Comp1� IKK� leads to, on an
average a ~14% increase in the ability to find IκB� being active
(Fig. 8B, inset). Concomitantly, in the late-phase, the average
relative change in the dynamics of NFκB being active is ~3% but
with a large cloud around in the early phase (Fig. 8A). This
suggests that the perturbation causes only a small fraction of the
signal flow path, on an average, involving NFκB to be shutdown.
Thus, the other signaling pathways being active could ensure the
other normal functioning of the cell to be preserved intact.
Large cloud around ΔENFκB in the early phase (t<2) indicates

that for those start states for which ΔENFκB < 0, the signal flows
paths having NFκB being active in the case of TAK1 inhibition has
significantly reduced compared to that without inhibition. These
signal flow paths are perhaps diverted to apoptosis attractor
leading to an increased absorption probability. This diversion to
apoptotic signaling is mediated primarily by Bax and XIAP. While
NFκB directly activates XIAP, it indirectly inhibits Bax via two
pathways, which respectively involves BCL-xL and BAD-14-3-3
(Fig. 2). This indirect inhibition could cause the start states having
ΔENFκB < 0 to exhibit ΔEBax>0 as witnessed by the large cloud
above the mean ΔEBax in the early phase (Fig. 8C). Since XIAP is
activated by NFκB, cloud around mean ΔEXIAP in the early phase is

similar to that of ΔENFκB. On the other hand, while Bax can cause
an increase in apoptosis by exhibiting a positive influence on
c3� � p17, XIAP indirectly reduces cell-death response by inhibit-
ing c3� � p17 in multiple ways including a pathway from Bax via
c3� � p20 (Fig. 2). Therefore the cloud around c3� � p17 exhibits a
larger relative change for a prolonged time (up to 4th timepoint),
indicating significant rewiring of the signal flow paths originating
from many start states and leading to c3� � p17 being active, and
thereby improving the ability for those states to reach apoptosis.
This shows that XIAP could be the prime mediator of the cross-talk
between the pro-survival and apoptosis pathways. In fact, this
finding is substantiated by the experimental evidence that TAK1
inhibition downregulates XIAP levels in multiple TNFα stimulated
cells18,72,73.
In summary, we show that reduction in the activity of Comp1�

IKK� can improve the ability of cells to favor apoptotic response
over pro-survival phenotype, in the presence of cell-to-cell signal
flow variability. The model incorporating the inhibition of
Comp1� IKK� predicts the apoptotic phenotypic response in
Jurkat-T and U937 cells pre-treated with TAK1 inhibitor, which
induced the inhibitory conditions. In particular, the reduction in
the activity led to modulation of the ensemble-level XIAP
mediated dynamic cross-talk between the pro-survival and
apoptotic arms of the TNFR1 network to tilt the phenotype
towards cell-death.

DISCUSSION
Dynamic cross-talk regulating the TNFR1 signaling mediated pro-
survival and apoptotic phenotypic responses due to TNFα
stimulation is well-known2. Since TNFα cytokine is secreted in
large quantities by immune cells in a tumor microenvironment74,
varying extent of dynamic TNFR1 signaling is continuously
occurring in a population of cancer cells. Therefore, this dynamic
cross-talk regulation during TNFR1 signaling at a single-cell level
can be capitalized upon for various cancer therapeutic pur-
poses7,75,76. In this study, using a Boolean dynamic model
accounting for cell-to-cell signal flow variability juxtaposed with
experimental measurements, we demonstrate that NFκB along
with BCL-2 and PI3K via XIAP regulates the dynamic cross-talk
signaling between TNFR1 network mediated pro-survival and

Fig. 8 Effect of Comp1 – IKK* inhibition on intracellular signaling entities. Relative change of the transients of A NFκB, B IκB�, C Bax, D XIAP
and D c3� � p17 being active for the case of TNFR1 network with inactive Comp1� IKK�. Relative change is quantified by
ΔEðtÞ ¼ ðETNFR1Δ tð Þ �ETNFR1 tð Þ)/ETNFR1 tð Þ. Pink cloud around the population-averaged trajectory (red) encompasses the ΔE from different
start states. Blue dashed line captures the trajectory for each of the nodes from the same randomly chosen start state. Inset in B captures the
zoomed version of a part of the figure for better clarity.
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apoptotic responses. The sources for heterogeneity are the
variation in the active/inactive state of different nodes and in
the multitude of transient signal flow paths, introduced by the
random order asynchronous update scheme. We distilled out the
dynamic regulation via this cross-talk by systematically analyzing
the partial state transition graph (pSTG), constructed using a
computationally effective algorithm: ‘Boolean Modeling based
Prediction of Steady-state probability of Phenotype Reachability’
(BM-ProSPR). Model analysis predicted the phenotype switching
from pro-survival to apoptosis in U937 and Jurkat-T cell lines
induced by TAK1 inhibition.
TNFα activated TNFR1 network model predicts the experimen-

tally observed trend in Jurkat-T and U937 cells that pro-survival
response is the favorable outcome under normal conditions. We
showed that the transient variation of the key intracellular entities
NFκB, IκB�, PI3K, and c3� � p17 being active follows the
experimentally observed trend of the corresponding population-
averaged trajectories reported in literature8,63. This demonstrates
that the model developed could mimic the ensemble-level
dynamics of the intracellular machinery and therefore captures
the phenotypic response. A simultaneous regulation of NFκB, PI3K,
and BCL-2 dynamics by blocking the Comp1� IKK� complex can
lead to a partial shift of the phenotypic response from pro-survival
to apoptosis at single-cell level. This shift can be achieved by
preserving many signal flow paths resulting in NFκB being active,
especially at the late-phase suggesting the pro-survival signals
continue to be preserved to some extent, indicating that essential
functions may not have been sacrificed. We substantiated the
phenotypic switching using single-cell level experimental mea-
surements in the model cell lines pre-treated with TAK1 inhibitor,
a direct modulator69 of Comp1 and IKK� complex formation yet
preserves the dynamics of essential nodes. TAK1 inhibition
favoring the TNFα mediated apoptosis response via NFκB has
been shown previously46. However, we show that TAK1 inhibition
additionally modulates the dynamic cross-talk between the TNFα
mediated pro-survival and apoptotic pathways even when
heterogeneity in the signal flow paths are present. A partial
switch in the phenotype switching could perhaps be due to the
inability of TAK1 inhibitor to shutdown other non-canonical
pathways activating NFκB77,78. While our analysis show only partial
shift to apoptosis, a possible approach to enable a significant
phenotype switching from pro-survival to apoptotic response is to
inhibit LUBAC, which by directly regulating IKK� arrests NFκB
activity79–82. Although this could be a promising approach, a
complete shutdown of NFκB may be undesirable as it can
significantly affect the other important and necessary functions of
a cell.
A signal flow path from a start state, extracted from the BM-

ProSPR constructed pSTG by computing the connectivity (C) and
signal flow path (P) matrices (Methods), mimics the dynamics of a
typical TNFα stimulated cell. For unperturbed conditions, simu-
lated transients (of a few nodes) from ~48% of the start states
were qualitatively similar to those measured (Supplementary Fig.
13A). Thus, the multitude of signal flow paths originating from
such a start state could guide in assimilating the ensemble-level
dynamic trends of the signaling nodes in TNFR1 network that
either were not or could not be measured experimentally. A
comparison of these trends with those computed under other
perturbed conditions could offer insights into how signal flow
paths can be suitably re-wired for enabling improved phenotype
modulation following TNFα stimulation without compromising
essential cellular functions.
BM-ProSPR employs Temporality55 and PageRank57 measures to

self-learn the extent of evolution of the STG and thereby, aids in
identifying the minimum number of permutations required to
capture adequate signal flow paths, and the associated variabil-
ities. For small, medium and large networks considered, BM-
ProSPR predicted that a (tiny) fraction of the maximum possible

permutations is sufficient for constructing a reliable pSTG
(Supplementary Figs 6, 7, and 11). For example, only 219 out of
19! ð¼ �1:2 ´ 1017Þ permutations are sufficient to reliably quantify
the TNFα activated TNFR1 network’s reachability to pro-survival
and apoptotic phenotypes (Supplementary Fig. 14). The self-
learning nature of BM-ProSPR and the ensuing significantly low
computational cost makes it directly amenable to larger networks
for which constructing a complete STG is infeasible. Thus, BM-
ProSPR makes performing signal flow analysis and thereby
distilling out causalities in large biological networks feasible. BM-
ProSPR’s ability to reliably construct partial STG for a random
configuration model with pre-decided degree, sign and logic
distributions suggests that developed algorithm can be applied to
study any curated network to model, even non-biological systems.
While BM-ProSPR assumes an ON/OFF behavior for a node, the
approach can be extended to track cell-to-cell signal flow
variability when the entities are multi-valued83 causing a steep
increase in the state space size.
The ability of BM-ProSPR implementation hinges on starting

with a null set consisting of all the states permitted by the Boolean
model of the network. Very large biological networks, even after
discounting for the partial logical steady-state fixed entities, can
have significantly large state space. For such networks, BM-ProSPR
too can offer a computational challenge in performing the signal
flow analysis. Arriving at strategies for identifying a threshold
minimum number of states needed for the reliable construction of
the pSTG underlying such very large biological networks could
help circumvent this challenge.

METHODS
Cell culture and reagents
U937 and Jurkat-T cells were procured from the Cell Repository at
National Centre for Cell Science (NCCS), Pune, India. It was
cultured in RPMI-1640, supplemented with 10% fetal bovine
serum (FBS), 2 mmol/l L-glutamine, and 1% antibiotic solution, all
procured from HiMedia (Mumbai, India) with a cell-seeding
density of 5 × 105 cells/ml. Cells were maintained at 37 °C in a
humidified 5% CO2 incubator. 17.3 kDa TNFα (GenScript) was
reconstituted in double-distilled water to a concentration of
100 μg/ml.

Apoptosis detection by Annexin V/PI staining
U937 and Jurkat-T cells were stimulated with 100 ng/ml TNFα for
the specified time under the standard incubating conditions. Cells
were then harvested in the form of a pellet by centrifugation at
1000 rpm for 5 min at room temperature (RT). Harvested cells were
resuspended in 1X Annexin binding buffer, and then stained with
FITC-labeled Annexin V and PI dyes (BD Pharmingen, San Diego,
CA, US). The fluorescence from the bound Annexin V and PI were
detected using BD FACS Aria (BD Biosciences, San Jose, CA, US)
within 30min of dye addition.

One-step state transition using ROA
Starting from a state v, using a unique permutation sequence q
chosen uniformly randomly, the first node, say i, in q is updated by
evaluating the corresponding Boolean function f iðvÞ to arrive at
an intermediate state vi . The next node j in q is updated by
evaluating f jðviÞ to obtain vj . This procedure of finding the
intermediate states is repeated until all nodes in q are exhausted.
The final state thus achieved is the one that is a result of the one-
step state transition originating from v and corresponding to q.

Partial logical steady-state analysis (pLSSA)
The network’s list of interactions with the associated logic were
parsed into CellNetAnalyzer (CNA)50. Housekeeping and the
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(relevant) input nodes were set to ‘1’. “Compute logical steady-
state” option in CNA was used to identify the nodes attaining
partial Logical Steady-State (pLSS) and the corresponding
Boolean value.

Identification of fixed points
Starting from each of the 2N states 2R, a one-step transition was
computed using any one permutation, chosen uniformly ran-
domly. The state for which the one-step transition using the
chosen permutation results in the same state is the fixed point.
Detailed procedure along with an illustration is provided in
Supplementary Note 2.1.

PageRank
PageRank vector PRq corresponding to Mq after the qth

permutation was estimated by solving
PRq ¼ αMqPRq þ 1� αð ÞeT , where, α ¼ 0:85 and eT is a one
vector. PRq after every q was computed using the inner-outer
iterative scheme57.

Kendall’s-Tau rank correlation
The elements of PRq were re-sorted in the same order of
placement of the states in PRq�1, that is, PageRank order after
the penultimate permutation. Kendall’s-Tau rank correlation
τqðPRq�1;PRqÞ was computed by comparing the rank of the
states in PRq and PRq�1, and subsequently enumerating the
concordant and discordant pairs. A SciPy implementation
scipy.stats.kendalltau, accessed from Matlab R2018b®, was used
for this purpose84.

Markov chain random walk approach for estimating
Absorption probability
The state transition matrix Mql was re-arranged into a canonical

form
I 0
R Q

� �
where, I and 0, respectively are (n ´ n) identity

matrix denoting self-loops for FPs and (n ´ ð2N � nÞ) zero matrix
with n being the number of FPs in the STG. While matrix R
specifies the transition probability of states transitioning directly
into a FP, Q captures that into any other transient state.
Absorption probability pv

FPi
to reach an attractor FPi from any

transient state v due to Markov chain random walk on the STG is
given by the ith column of I � Qð Þ�1R 85. I � Qð Þ�1R was
calculated using stabilized bi-conjugate gradient (bicgstab)
iterative scheme in Matlab R2018b®. The bicgstab converged
usually within 5 to 7 iterations.

Time varying conditional probability of finding a node
being active
The conditional probability of a node, such as NFκB, being
updated to or maintained in an active state in a cell with a certain
start state v0 having to ability to reach both apoptosis and pro-
survival attractors is governed by the multiple signal flow paths
from v0. These signal flow paths may overlap. All signal flow paths
from v0 are first identified (Methods). Intermediate states in these
signal flow paths are aligned according to the update steps.
Distinct states appearing in every update step across these signal
flow paths are captured in an associated tmax ´ 2N connectivity
matrix (C), where tmax is that maximum pseudo-time step by
when all signal flow paths from v0 have reached a fixed point or a
set of states that recur thereafter. Note that the states in this
recurring set are either (i) in the strongly connected component
(SCC) or (ii) in any of the paths between the states in SCC and a FP
or (iii) FPs themselves. The elements of the first and subsequent

(tth timestep) rows of C are respectively captured by

C1j ¼
1; ifMv0 j ≠ 0

0; otherwise

�
(8)

and

Ctj ¼
1; if

P
i
MijCðt�1Þi ≠ 0 in the tthupdate step

0; otherwise

(
(9)

For the TNFR1 network (Fig. 2), tmax ¼ 12. (Procedure for finding
tmax is in Supplementary Note 4.8). In the tth update step, the
overall transition probability of different one-step transitions
resulting in a state j (with NFκB updated to or maintained in an
active state) in these signal flow paths are captured in a tmax ´ 2N
signal-flow-path matrix P. The elements in the first and
subsequent rows of P are respectively specified as

P1j ¼ Mv0 jjðvNFκB ¼ 1 in jÞ 8j ¼ 1; 2N (10)

and

Ptj ¼
X2N
i¼1

Mij Cðt�1Þi jðvNFκB ¼ 1 in jÞ 8j ¼ 1; 2N (11)

For a start state v0, the timestep dependent conditional
probability ENFκB tð Þjv0 that NFκB is active at the tth timestep is
the overall fraction of one-step transitions at step t leading to
NFκB either transitioning to active form or being maintained at
“1”. This conditional probability for the first and tth timestep,
respectively, are given by

ENFκB 1ð Þjv0 ¼
X2N
j¼1

P1j (12)

and

ENFκB tð Þjv0 ¼
P2N

j¼1 PtjP2N

j¼1 Cðt�1Þj
(13)

ENFκB 1ð Þjv0 (Eqs. 12 and 13) specifies the NFκB transients for a
given start state in the BD modeling framework. Such transients
estimated for all possible start states in the STG collectively gives
the ensemble-level dynamics similar to that obtained from
experimental measurements. This procedure was used to estimate
the ensemble-level dynamics of PI3K and c3� � p17 nodes in the
TNFR1 network (Fig. 2).

Inhibition of TAK1
Takinib (EDHS-206)69 (MedChemExpress) was dissolved in DMSO
to a concentration of 10 mM and the stock was stored at −20°C
until use. Cells were pre-treated with 20μM Takinib, which inhibits
the activity of TAK1, for 1 hr before stimulating with 100 ng/ml
TNFα. As a control case for this, cells were treated only with
Takinib for a prolonged duration, details of which are in
Supplementary Note 4.7.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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