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Abstract

Tumor necrosis factor alpha (TNFα) is a well-known modulator of apoptosis by maintaining

a balance between proliferation and cell-death in normal cells. Cancer cells often evade

apoptotic response following TNFα stimulation by altering signaling cross-talks. Thus, vary-

ing the extent of signaling cross-talk could enable optimal TNFαmediated apoptotic dynam-

ics. Herein, we use an experimental data-driven mathematical modeling to quantitate the

extent of synergistic signaling cross-talk between the intracellular entities phosphorylated

JNK (pJNK) and phosphorylated AKT (pAKT) that orchestrate the phenotypic apoptosis

level by modulating the activated Caspase3 dynamics. Our study reveals that this modula-

tion is orchestrated by the distinct dynamic nature of the synergism at early and late phases.

We show that this synergism in signal flow is governed by branches originating from either

TNFα receptor and NFκB, which facilitates signaling through survival pathways. We demon-

strate that the experimentally quantified apoptosis levels semi-quantitatively correlates with

the model simulated Caspase3 transients. Interestingly, perturbing pJNK and pAKT tran-

sient dynamics fine-tunes this accumulated Caspase3 guided apoptotic response. Thus,

our study offers useful insights for identifying potential targeted therapies for optimal apopto-

tic response.

Author summary

TNFα mediated apoptosis, a form of cell-death, is the desired outcome for cancer thera-

peutics. This outcome is governed by complex regulation involving several signaling enti-

ties stimulated by TNFα. Relating the transient levels of these entities over early phase of

the signaling response to the late-phase cell-death is a challenge. We developed a knowl-

edge and data-driven mathematical model to unravel the dynamic synergistic correlation

between the early transients governing the apoptotic response. Using flux balance and

branch analysis, we demonstrated that the dynamic cross-talk between different key sig-

naling entities regulates the apoptotic response. We performed inhibitory experiments

predicted by model simulations and thereby established that cells tweak the extent of

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010626 October 14, 2022 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Biswas S, Tikader B, Kar S, Viswanathan

GA (2022) Modulation of signaling cross-talk

between pJNK and pAKT generates optimal

apoptotic response. PLoS Comput Biol 18(10):

e1010626. https://doi.org/10.1371/journal.

pcbi.1010626

Editor: Jing Chen, Virginia Polytechnic Institute and

State University, UNITED STATES

Received: May 23, 2022

Accepted: October 3, 2022

Published: October 14, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010626

Copyright: © 2022 Biswas et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data are in the

manuscript and/or supporting information files.

The GitHub repository at https://github.com/

baichat90/SB-BT-Modulation-of-TNF-mediated-

https://orcid.org/0000-0001-6424-0765
https://doi.org/10.1371/journal.pcbi.1010626
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010626&domain=pdf&date_stamp=2022-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010626&domain=pdf&date_stamp=2022-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010626&domain=pdf&date_stamp=2022-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010626&domain=pdf&date_stamp=2022-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010626&domain=pdf&date_stamp=2022-10-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010626&domain=pdf&date_stamp=2022-10-26
https://doi.org/10.1371/journal.pcbi.1010626
https://doi.org/10.1371/journal.pcbi.1010626
https://doi.org/10.1371/journal.pcbi.1010626
http://creativecommons.org/licenses/by/4.0/
https://github.com/baichat90/SB-BT-Modulation-of-TNF-mediated-crosstalk-06092022
https://github.com/baichat90/SB-BT-Modulation-of-TNF-mediated-crosstalk-06092022


synergism during signal transduction to modulate the apoptotic response in a time-

dependent manner. Thus, our approach provides useful insights for identifying signaling

targets to arrive at novel combinatorial cancer therapies.

Introduction

The pleiotropic cytokine Tumor necrosis factor alpha (TNFα) mediates diverse cellular pheno-

typic decisions such as apoptosis, inflammation, proliferation [1–9]. In normal cells, TNFα
maintains a balance between different phenotypes [10]. Since such a balance is disrupted in a

diseased cell in a cancer or autoimmune milieu [11–14], its restoration using interventional

therapeutic approach involving TNFα is being considered recently [15,16]. Often these strate-

gies become ineffective to cause optimal apoptosis [17,18]. This is because TNFα activates a

number of signaling pathways [19,20] culminating in varied apoptotic response. This leads to

a question as how to optimally control the TNFα mediated apoptotic dynamics in a cell-type

specific manner.

One of the primary events involved in cells exhibiting an apoptotic response is activation of

Caspase3. Caspase3 is one of the effector caspases and is a key player involved in regulation of

cell-death [11,19,21,22]. Along with modulating cell-death, TNFα strongly controls the sur-

vival responses by transducing information through entities such as NFκB [21,23–26], pAKT

which is activated by PI3K [27–30]. These entities along with pJNK are well-known regulators

of survival and apoptosis [31,32]. However, the extent of dynamic signaling cross-talk between

these entities regulating the optimal cell-type specific apoptotic outcome remains unclear.

Mathematical modeling of molecular network [33–35] that regulates a cell’s response to

TNFα enables quantification of the dynamic behavior of various entities [2,36]. These network

modeling frameworks provide an opportunity to investigate underlying signaling cross-talk

behavior in a context-specific manner. For example, a combined computational and perturba-

tive experimental study showed that along with other intracellular phospho-proteins, pAKT

may be involved in influencing the stimulus-strength dependent kinetics of the short-term (4

h) TNFα signaling induced apoptotic response [37,38]. These studies suggest that in shorter

time scales, pAKT could be a key modulator of TNFα induced apoptosis via Caspase3 activa-

tion. However, apoptosis in mammalian systems occurs over much larger timescales. Correlat-

ing these observations across timescales requires a detailed investigation of the TNFα triggered

activation of Caspase3, whose early phase transients are regulated by various intracellular pro-

teins, among which a key regulator is NFκB [39].

NFκB transients in a cell stimulated by TNFα contain sufficient information to sense the

stimulus dose and accordingly fine-tune the regulation of cellular responses [40]. Recent study

on NIH3T3 cells demonstrated that NFκB dynamics precisely reflects the rate of change in

dose of TNFα stimulation [41]. The underlying TNFα molecular network contains several

integrated pathways and multiple feedback regulations. Both quantitative and qualitative

mathematical models of the network could provide a precise understanding of the dynamical

properties of such a complex system. Single-cell level model of the TNFα dose-dependent

NFκB signaling revealed that a cell’s commitment to apoptotic or proliferative phenotype

could be embedded in the early transient response of NFκB [42]. This raises a question as to

how precisely the early NFκB transients refine the sustained Caspase3 activation that eventu-

ally results in a long-term apoptotic response.

Discrete-level models of TNFα network predicted the experimentally observed qualitative

trend of phenotypic pro-survival and apoptotic response [43,44]. While discrete-level
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modelling offers identification of signaling trends, it cannot account for time-dependent cor-

relations which is required for unravelling the extent of cross-talk between different entities.

However, predicting dynamic cross-talk and its ensuing effects on the long-term phenotypic

response requires a detailed kinetic modelling. Recent kinetic modelling showed that TNFα
mediated apoptosis is influenced by the TNFα level [45–47] and the overall mitochondrial

mass [48]. These do not reveal the underlying dynamic signaling cross-talk between various

intra-cellular intermediate entities.

Hence, the goal of this study is to decipher the dynamic signaling cross-talk between the

key intracellular entities that regulates Caspase3 downstream and subsequently correlate it

with the phenotypic apoptotic response. In order to achieve this objective, we took an experi-

mental data-constrained systems biology approach. In particular, we seek to distill out this

dynamic cross-talk regulating the TNFα mediated phenotypic apoptotic outcome in a context-

dependent manner by considering U937 as a model cell line. The parameters involved in the

kinetic model needs to be estimated, as these are not available in the literature for the consid-

ered cell-type. The methodology adopted leads to grossly identifiable sets of model parameters

and thereby making our multi-input model predictive. We quantify the transient contribu-

tions by pJNK, pAKT and Caspase3, and their combinatorial effect that govern the hidden

dynamic correlation using a detailed flux and branch analysis of the model of TNFα network.

Our study revealed that targeted inhibitors can refine the dynamic cross-talk as well as the apo-

ptotic outcome.

Results

NFκB signal inhibition enhances TNFα mediated apoptotic response

To study the dynamics of cellular fate on soluble 17.3kDa TNFα stimulation, we measured the

apoptosis fraction using Annexin V assay (Methods) in the U937 cells. A 24 h exposure of

TNFα (100 ng/ml) results in 25% of the population undergoing cell-death (Fig 1A, blue bar)

(Details of estimation of the cell-death along with associated controls are in S1 Text). Low cell-

death following exposure to only TNFα indicates that in U937 cells the cytokine might be

favoring the survival signaling as well [2] and maintains a balance between the apoptotic and

survival responses. As a strong mediator of survival signaling [11], NFκB is likely to be acti-

vated in response to TNFα stimulation in U937 cells. In order to ascertain it’s involvement, we

exposed U937 cells to Triptolide (TPL) which blocks NFκB transactivation and thereby

arrested signal flow through survival pathways [49]. The relative drop in the survival response

due to TPL confirms NFκB inhibition in U937 cells (S1 Fig). Pre-treatment with TPL (60 nM)

and subsequent exposure to TNFα resulted in 80% cell death (Fig 1A, black bar). A compari-

son of apoptosis levels for this case with those corresponding to only TPL (Fig 1A, red bar)

pre-treatment determines that blocking survival pathway in U937 can lead to sufficient apo-

ptotic response. However, those cells experiencing a pre-treatment of TPL showed a greater

initial (8 h) apoptotic response in the presence of TNFα (Fig 1A, red and black bars). At the

same time, the levels of cell death in the case of only TPL, and those pre-treated with TPL and

exposed to TNFα were similar at 24h. This indicates that the survival signaling pathway coor-

dinates with those of apoptosis in order to regulate the cell-death in U937 cells. Overall, in the

early phase (<8 hours), the apoptosis level during the combined treatment is nearly equal to

the sum of that achieved for individual TPL and TNFα stimulation hints the presence of a syn-

ergistic response. On the contrary, in the later phase (>8 hours), the apoptosis levels for TPL

and TPL+TNFα treatment are nearly equal. However, these responses do not reveal how signal

flow through different branches of the network orchestrates this synergism.
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Deciphering this synergism requires distilling out the intracellular dynamic features that

govern the survival and apoptotic responses in TNFα stimulated U937 cells. The key regula-

tory entities involved in this orchestration are depicted in Fig 1B. It is well established that the

two upstream signaling entities pAKT and pJNK regulate apoptosis [38,50,51]. pAKT has a sig-

nificant role in preventing Caspase3 activation [52]. pJNK has a role in activating downstream

caspases [53] and thereby regulating cellular apoptosis. This role of pJNK has been found to be

context-specific [53,54]. Thus, we simultaneously measured the dynamic levels (in terms of

relative fold change (FC)) of these activated signaling proteins using high-throughput experi-

mentation [55,56] (Methods; S1 Text), which are presented in Fig 1C. In the case of only

TNFα stimulation, Caspase3 dynamics being relatively unaltered for the entire duration (Fig

1Ci, blue) corroborates with the low apoptosis percentage over 24 hours (Fig 1A, blue bar).

Note that even for pJNK and pAKT trajectories for the case of only TNFα stimulation, an ini-

tial increase in the fold change was observed (Fig 1Cii–1Ciii (inset), blue bar). On the other

hand, under NFκB inhibitory conditions (TPL and TNFα +TPL), a rise in the later time period

(>8h) of the Caspase3 FC (Fig 1Ci, red and black bars) commensurate with the enhanced cell

death as found in Fig 1A (red and black bars). The subsequent continuous decrease in pAKT is

reflected by a sustained increase of Caspase3 levels.

These results suggest that cells undergo enhanced apoptosis as well as a marked change in

the dynamics of pAKT, pJNK and Caspase3, if NFκB mediated survival signaling is inhibited

using TPL. However, the extent of dynamical crosstalk between these intracellular entities can-

not be inferred from such observations. Therefore, how the dynamics of upstream proteins

refine the downstream Caspase3 response, eventually regulating the apoptosis, cannot be

Fig 1. Apoptosis and intracellular signaling patterns due to TNFα stimulation in the presence and absence of

NFκB activity. (A) Cell death percentage measured using Annexin V assay under three different experimental

conditions at different time points. (B) A schematic of TNFα signaling mediating survival and apoptotic responses via

key intracellular regulators. (C) Trajectories of relative fold change (FC), as defined by Eq (4) in Methods, of (i)

Caspase3, (ii) pJNK, and (iii) pAKT for three different experimental conditions (insets show the zoomed version for the

first 4 hours). Experiments were done in triplicates using U937 cells. Details of extraction of apoptosis percentage along

with controls of intracellular proteins, and trajectories of untreated cells over 24h time period are presented in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010626.g001
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determined from these observations. It remains inconclusive as to which entities could be

tuned to regulate the cellular decision-making events involved in cell survival or apoptosis.

Moreover, the synergism in eliciting distinct apoptotic responses in the early and later phases

cannot be identified using the simple network proposed in Fig 1B. Thus, to understand how

the crosstalk between multiple intracellular dynamic signals quantitatively modulates cellular

apoptosis, we need to develop a predictive mathematical model of the underlying TNFα
network.

Data-driven mathematical model of TNFα network

The TNFα network wiring diagram considered for the data-driven mathematical model is

depicted in Fig 2A, which is an expanded version of Fig 1B. Biochemical details of the interac-

tions in Fig 2A are presented in S2 Text and S2 Fig. The network model (Fig 2A) assumes that

soluble 17.3kDa TNFα upon binding to membrane bound TNFR1 activates MAPK cascades

(pERK and pJNK), NFκB and pAKT survival pathways along with the Caspase3 pathway,

which mediates apoptosis [2]. (Since TNFR2 is activated only by 26kDa transmembrane

TNFα, TNFR2 and its downstream signaling are excluded.) Molecular players such as cer-

amide are also activated upon TNFα stimulation, which subsequently influence the pAKT and

pJNK levels [57]. MKK4/7, ROS and pJNK are involved in a positive feedback loop. As NFκB

inhibition resulted in an augmented level of apoptosis (Fig 1), we included nodes governed by

NFκB. These nodes are involved in activation or inhibition of pAKT, pJNK and Caspase3. In

our model, Bcl2 and PI3K directly activate pAKT, while CAPP inhibits pAKT. TNFR1 and

pJNK activate Caspase3, while pAKT and NFκB inhibits Caspase3. MKK4/7 and C1P induce

the activation of pJNK, but ERK1/2 and XIAP/Gadd45β deactivate pJNK expression. We

incorporated these entities into the model to extensively study the signaling cross-talk between

these entities leading to apoptosis regulation [58–60]. To reduce the network complexity, we

introduced direct or minimal set of interactions to account for long-range feedbacks. Interac-

tions (Figs 2A and S2) represent either direct activation, direct inhibition or overall causal

effect due to a complex set of sequential biological regulations. While some of these interac-

tions were expressed in terms of mass-action kinetics, the remaining were modeled using

either Michaelis-Menten or Hill-type kinetics to appropriately capture the underlying nonlin-

ear behavior. (Details of each of these are given in Table I in S2 Text.)

The proposed mathematical kinetic model of the network (S1, S2 and S3 Tables) was cali-

brated using experimentally observed relative FC data of pJNK, pAKT and Caspase3. (Details

of the calibration are given in S3 Fig) By implementing the appropriate statistical criteria

(Methods; S2 Text), the kinetic parameters were estimated (S3 Table). Boxplot analysis

revealed that the 3% best-fit parameter sets (out of 2000 samples) are reasonably identifiable

(S4 Fig). These 3% parameter sets were used for generating model simulated trajectories,

which fit well with the experimental data within the error margin, as shown in Fig 2B. (S5 Fig

shows the best-fit trajectory.) Model simulations show that inhibition of NFκB by TPL cannot

be restored even in the presence of a combination of TPL and TNFα (S3 Text and S6 and S7

Figs) which substantiates the similarity in the transient Caspase3 dynamics for TPL and TNFα
+TPL treatments (Fig 2Bvi and 2Bix). This further shows that TPL inhibition is indeed signifi-

cant in shutting down the activity of NFκB.

In order to test the predictive ability of the model, we examined the simulated transients

with independent experimental observations obtained for cells pre-treated with lower concen-

tration of TPL (10 nM) in the presence TNFα (S8 Fig). The small mean square displacements

between the experimental data and simulated trajectories indicate that the model predicted

pAKT, JNK and Caspase3 dynamics with reasonable accuracy (S8 Fig). Moreover, under TPL
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Fig 2. Interaction network and model training with quantitative time resolved data of U937 cells. (A) Schematic of

TNFα signaling network. Black arrows and red hammers, respectively represent activation and inhibition of entities.

While green boxes indicate experimentally measured marker proteins, red cross captures NFκB inhibition by TPL (red

oval). Multiple pathways from NFκB inhibiting Caspase3 are lumped as a single inhibitory interaction. (Details of the

entities and the interactions are in S2 Text.) (B) A comparison of the experimentally measured (red-wine circles) and

model estimated signaling marker trajectory of pAKT (i, iv, vii), pJNK (ii, v, viii), and Caspase3 (iii, vi, ix) under

different stimulation conditions. In each of these, black lines capture the mean of best 3% model-fitted trajectories. The

blue cloud around the mean encompasses all 3% best-fitted trajectories. Note that the experimental measurements are

those in Fig 1C. To constrain the model better, two additional data points (10 and 14 hours) were included during

parameter estimation. The levels at these two time points were estimated using spline fitting the experimental data.

Error bar around each experimental data point were calculated using standard error model.

https://doi.org/10.1371/journal.pcbi.1010626.g002
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(10 nM)+TNFα (100 ng/ml) case, analysis of the relative influence of identified cross-talk

related parameters on the predicted dynamics of these entities revealed that the pAKT and

pJNK dynamics are the least sensitive (S9 Fig). On the other hand, the Caspase3 dynamics is

sensitive to some of the parameters to a higher extent (S9 Fig).

Overall, the mathematical model of the network reliably mimics our experimental findings.

However, mere comparison of the transients of the marker proteins do not offer insights into

how the overall dynamics is regulated. Such an insight can be obtained by systematically

unraveling the dynamic cross-talk between various entities. Unless otherwise stated explicitly,

we will use the model with the identified best parameter sets for further cross-talk analysis.

Unraveling the dynamic cross-talk between signaling entities in the

network

We next focus on unraveling the dynamic cross-talk between pAKT, pJNK and Caspase3 tran-

sients. We quantitate this by analyzing influence of specific entities in the network (Fig 2A) on

these transients by capturing the corresponding biochemical reaction rate or flux. A signal

flowing via an interaction from a start to an end node can be quantified by the reaction flux

transduced by it. This reaction flux via an interaction is specified by the rate at which the start

node influences the dynamics of the end node. Note that the instantaneous level of a certain

protein is a linear combination of the contributing fluxes with appropriate sign. (Details of

flux calculations along with associated expressions are provided in S4 Text.) We track the

dynamic evolution of these fluxes (S10 Fig) under all three stimulation conditions (TNFα,

TPL, TNFα +TPL). We present in Fig 3 the dynamic evolution of the fluxes of the interactions

that contribute significantly to the transient levels of pAKT, pJNK and Caspase3.

The reaction flux analysis shows that pAKT dynamics is positively regulated by pJNK and

PI3K, while CAPP is a negative regulator of pAKT under only TNFα stimulation (Fig 3Ai). In

the initial phase, pAKT was majorly controlled by pJNK (Fig 3Ai), thus the drop in the pJNK

contribution is reflected on the decreasing levels in the initial phase (up to 4 h) of the dynamics

of pAKT (Fig 2Bi). At later time-points, both pJNK and PI3K mediated effects dominate over

other fluxes, and overcome the CAPP facilitated inhibition to initiate the late phase activation

of the pAKT dynamics (Figs 3Ai and 2Bi). Bcl2 protein does not influence pAKT level, as its

activity is repressed by NFκB (Fig 3Ai). However, under NFκB inhibitory conditions (TPL and

TNFα +TPL), Bcl2 induces a rapid increase in the reaction flux of pAKT (Fig 3Bi and 3Ci) dur-

ing the initial phase (up to 2 h). This results in a sharp increase in the initial dynamics of

pAKT (Fig 2Biv and 2Bvii). A comparison of the contributions to pAKT for only TNFα stimu-

lation (Fig 3Ai) and those with TPL stimulation (Fig 3Bi and 3Ci) suggests that pJNK contribu-

tions increased relatively as a result of NFκB inhibition. However, PI3K contribution is

completely lost, which can be attributed to the absence of NFκB inhibition of PTEN (Fig 3Bi

and 3Ci). This re-balancing of fluxes ensures a sustained maintenance of the pAKT dynamics

at the later phase (Fig 2Biv and 2Bvii). In the case of only TPL, CAPP mediated inhibition of

pAKT is insignificant (Fig 3Bi) as CAPP activation via Ceramide requires TNFα stimulation.

Thus, pAKT levels in the case of TPL are higher compared to that of TNFα treatment. Since

pAKT dynamics is primarily governed by TPL, the TNFα+TPL treatment as well shows higher

pAKT levels as compared to only TNFα case.

The reaction flux investigation further indicates that C1P and MKK4/7 are the key control-

lers of pJNK dynamics, while XIAP/Gadd45B (XG) negatively influences it (Fig 3Aii, 3Bii and

3Cii). Our analysis reveals that initially the inhibitory effect of XG dominates over the contri-

bution from any other nodes under only TNFα stimulation (Fig 3Aii), which creates a steep

drop in the FC of pJNK (Fig 2Bii) in the early phase. In the later phase, the C1P and MKK4/7
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primarily control the levels of pJNK (Fig 3Aii). However, in the presence of TPL, the inhibition

by XG appears to be less effective (Fig 3Bii and 3Cii), which helps to stimulate the dynamics of

pJNK at early time points (Fig 2Bv and 2Bviii).

Flux analysis further unfolds that NFκB and pAKT are the major negative regulators of Cas-

pase3 dynamics, while pJNK and TNFR1 are its positive modulators (Fig 3Aiii, 3Biii and

3Ciii). When stimulated with only TNFα (Fig 3Aiii), the balance between the predominant

inhibition by NFκB and mutual activation mediated by TNFR1 along with pJNK aid in main-

taining sustained levels of Caspase3 (Fig 2Biii). Under TPL treatment, the initial dynamics of

Caspase3 seems to be influenced both negatively by pAKT and positively by pJNK (Fig 3Biii)

resulting in no activation of Caspase3 at the early phase (~8h) (Fig 2Bvi). As the later phase

depicts a reduced pAKT inhibitory contribution towards Caspase3 flux (Fig 3Biii), there is an

augmentation in the level of Caspase3 dynamics (Fig 2Bvi). Under the influence of TPL in the

absence (Fig 3Biii) and presence (Fig 3Ciii) of TNFα, the contribution from NFκB reduced sig-

nificantly, while pAKT plays a predominant role in maintaining the dynamics of Caspase3

(Fig 2Bix). The inhibition mediated by pAKT was relatively less effective and thereby, controls

the threshold extent of Caspase3 protein resulting in a sudden increase in its level (S10 Fig).

Note that the positive contribution via pJNK helps in maintaining the sustained levels of Cas-

pase3 under all three stimulation conditions (Fig 3Aiii, 3Biii and 3Ciii). However, for TNFα
+TPL condition, the negative contribution of pAKT on Caspase3 dynamics starts increasing

after 10h (Fig 3Ciii), leading to a gradual decrease in the Caspase3 levels (Fig 2Bix) during the

later phase (16–24 h).

Fig 3. The evolution of majorly contributing fluxes towards pAKT, pJNK and Caspase3. Panels (A), (B), and (C),

respectively show the evolution of fluxes for the three markers under the stimulation conditions TNFα, TPL, and

TNFα + TPL. In each of the panels (i), (ii), and (iii), respectively show the evolution of fluxes contributing to dynamics

of pAKT, pJNK and Caspase3 dynamics for the three different stimulation conditions. The individual reaction fluxes

were estimated using the rate equation described in S4 Table. Evolution of all contributing fluxes has been presented in

S10 Fig.

https://doi.org/10.1371/journal.pcbi.1010626.g003
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In summary, there is a signaling cross-talk between the pAKT and pJNK dynamics which

in coordination with NFκB regulates the Caspase3 dynamics. However, our flux analysis does

not clearly identify how the signals originating from the TNFR1 and due to TPL pre-stimula-

tion are channeled through various branches in order to orchestrate the pAKT and pJNK tran-

sients mediated synergistic signaling response to Caspase3.

Branch analysis reveals the synergistic dynamic cross-talk signaling

regulating Caspase3 transients

We next perform a systematic branch analysis to distil out the extent of synergism exhibited in

the dynamics of the signaling entities (pAKT and pJNK) based on the three stimulation condi-

tions. First, we identify the branches originating from TNFR1 or NFκB and ending in pAKT

or pJNK (Tables 1 and S5). We analyze the relative capacity to process the signal flow through

these branches for an ith stimulation condition, where i stands for TNFα, TPL, or TNFα+TPL.

The relative capacity (R) of a branch, say, NFκB!pAKT (Bna1, Table 1), to process signal dur-

ing ith stimulation is given by

RNFkB!pAKTji ¼ ðJNFkB!pTEN � CpTENÞi � ðJpTEN!PI3K � CPI3KÞi � ðJPI3K!pAKT � CpAKTÞi ð1Þ

where, Jl!k captures the absolute flux flowing along the interaction from l to k. Ck, the relative

flux processing capacity of node k, is given by

Ck ¼

P
8n;mJn!m

P
8p;nJp!n

ð2Þ

where n, m and p is an index for the entities of the network (Fig 2B). We define extent of syner-

gism (S) facilitated by Bna1 as

SNFkB!pAKT ¼
RNFkB!pAKTjTNFaþTPL

RNFkB!pAKTjTNFa þ RNFkB!pAKTjTPL
� 1: ð3Þ

Note that, for a given branch, S > 0 and S < 0, respectively indicate positive and negative

synergism. We estimated the extent of synergism for all branches in Tables 1 and S5.

Table 1. Major branches originating from NFκB or TNFR1 and ending in the signaling entities pAKT or pJNK. Comprehensive list of all branches are presented in

S5 Table.

ID Branch

Bna1 NFkB a PTEN a PI3K� !AKT
Bna2 NFkB� !XG a JNK� !AKT
Bna3 NFkB a PTEN a PI3K� !ERK1=2 a JNK� !AKT
Bta1 TNFR1a� !PI3K� !AKT
Bta2 TNFR1a� !RAF� !ERK1=2 a JNK� !AKT
Bta3 TNFR1a� !Ceramide� !C1P� !JNK� !AKT
Bnj1 NFkB� !XG a JNK
Bnj2 NFkB a Bcl� 2� !AKT a MKK4=7� !JNK
Bnj3 NFkB a PTEN a PI3K� !Ceramide� !C1P� !JNK
Bnj4 NFkB a Bcl� 2� !AKT� !RAF� !ERK1=2 a JNK
Btj1 TNFR1a� !RAF� !ERK1=2 a JNK
Btj2 TNFR1a� !Ceramide� !C1P� !JNK
Btj3 TNFR1a� !Ceramide� !CAPP� !AKT a RAF� !ERK1=2 a JNK

https://doi.org/10.1371/journal.pcbi.1010626.t001

PLOS COMPUTATIONAL BIOLOGY Modulation of TNFαmediated signaling crosstalk for optimal apoptotic response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010626 October 14, 2022 9 / 28

https://doi.org/10.1371/journal.pcbi.1010626.t001
https://doi.org/10.1371/journal.pcbi.1010626


We present the dynamic variation of the extent of synergism facilitated by major branches

(Table 1) in Fig 4. Branch Bna1 originating from NFκB offers positive synergism in the early

phase and switches to negative synergism beyond 8 hours (Fig 4A, red). In particular, this posi-

tive synergism corresponds to the early rise of pAKT transient response for the TNFα+TPL

case (Fig 2Bvii), which could be attributed to the effect of TPL via PI3K. On the other hand,

the negative synergism in the later phase correlates with the drop in the pAKT response

induced by TPL. While branch Bna2 is responsible for maintaining the pAKT levels in the later

phase, Bna3 enables the early phase contributions of pJNK to pAKT transients (Fig 4A, blue

and green). The undulations in the pAKT transients (Fig 2B) are due to the dynamic variation

in the extent of positive synergism via branches Bta2 and Bta3, both originating from TNFR1

(Fig 4B, gray and purple). These undulations are perhaps caused by the positive feedback loop

involving RAF, ERK and JNK embedded in Bta2 (Table 1). The early phase switch in the syner-

gism enabled by the branch Bta1 highlights the TNFα mediated signaling to pAKT via PI3K

(Fig 4B, turquoise).

The steady marginal negative synergism via branch Bnj1 is responsible for maintaining the

JNK levels at later time points (Fig 4C, dark brown). On the other hand, the time-dependent

undulated positive synergism observed in branches Bnj2 and Bnj3 (Fig 4C, light brown and dark

blue) is manifested in the pJNK transients (Fig 2Bv and 2Bviii). The presence of

RAF-ERK-JNK positive feedback in branch Bnj4 (Table 1) could have resulted in the multiple

rise and drop of synergism (Fig 4C, dark green). The nature of synergistic dynamics observed

in Bnj4 indicates a weak representation of this branch in the overall pJNK transient. This is due

Fig 4. Dynamic evolution of the extent of synergism (S, defined in Eq 3) facilitated by major branches as depicted in

Table 1. Synergism (S > 0 is positive and<0 is negative) quantified from major branches originating from NFκB to

(A) pAKT and (B) pJNK, and that from TNFR1 to (B) pAKT and (D) pJNK. The evolution for other branches (S5

Table) are shown in S11 Fig.

https://doi.org/10.1371/journal.pcbi.1010626.g004
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to the poor estimation of the kinetic parameters (such as Kmae, Keir, and Kair) involved in the

RAF-ERK-JNK feedback loop, which could explain the qualitative difference between the

model fitting and experimental observations for pJNK under TNFα+TPL condition. Signal via

branch Btj1 and Btj2, both originating from TNFR1 maintain the initial basal pJNK transient

levels in a synergistic manner (Fig 4D, turquoise and pink). Moreover, the signal flow via

branch Btj3 contributes to keeping the transient pJNK levels high at the later phase (Fig 4D,

dark blue). Contributions due to the remaining branches are elucidated in S5 Text and

S11 Fig.

Overall the branch analysis elucidates how the transient pAKT and pJNK are governed by

signal flow through different major branches in the TNFα signaling network (Fig 2A). This

further confirms that a simple coarse-grained network in Fig 1A cannot capture the intricate

dynamic signaling cross-talk and the synergism orchestrating the pAKT and pJNK dynamics.

However, since branch analysis compares the relative signal flow due to multiple stimulation

conditions, it cannot be employed to identify how the Caspase3 transient dynamics is precisely

controlled by the pAKT and pJNK. In order to decipher this control, we next perform a time-

dependent correlation analysis under the three stimulation conditions.

Dynamic correlation between pJNK and pAKT levels modulates overall

Caspase3 transient response

The cooperative influence of pJNK and pAKT over Caspase3 transients need not necessarily

be instantaneous and could be over an extended period of time. pAKT and pJNK accumulated

over an extended period may coordinate in a time-dependent manner to control the overall

Caspase3 levels along with the apoptotic response. We perform a systematic time-dependent

correlation analysis of the accumulated levels of pAKT and pJNK to decipher the underlying

regulation under different stimulation conditions. The accumulation of pAKT and pJNK are

quantified by estimating the Area Under the Curve (AUC) of their transient responses (Meth-

ods) over different phases of the dynamics. In particular, we consider accumulation from the

start (0 h) of the stimulation up to 8h, 12h and 24h for the correlation analysis. Note that the

transients generated using the model for 5 best fit parameter sets were employed for this

purpose.

The average relative contributions of accumulated pAKT (ApAKT) and pJNK (ApJNK) to

overall Caspase3 levels are defined respectively by Eqs (7) and (8) in Methods. The relative

contributions for the three stimulated conditions are presented in Fig 5A. When cells were

stimulated with just TNFα, pJNK primarily contributes to the Caspase3 accumulated over var-

ious time durations (Fig 5Ai, shaded bars). Under TPL condition, pAKT dominates the Cas-

pase3 accumulation for the first 8h (Fig 5Aii, unfilled bars). On the other hand, pJNK, which

promotes Caspase3 activation, contributed negatively to Caspase3 accumulation (Fig 5Aii,

shaded bars). Accumulation up to 12h shifted the pJNK contribution from negative to positive,

while pAKT contribution decreased (Fig 5Aii). Subsequently, the influence of these two enti-

ties on overall Caspase3 level up to 24h becomes poised (Fig 5Aii). In the case of TNFα +TPL,

the positive contribution from pJNK towards Caspase3 accumulation over 8, 12 and 24h

increases along with a decrease in the impact of pAKT on it (Fig 5Aiii). This indicates that

pJNK plays a significant role in regulating Caspase3 expression throughout the entire time

course under all three stimulation conditions except during the initial phase for only TPL

treatment.

Since Caspase3 along with other effector caspases such as Caspase7 are known to initiate

apoptotic response [22], we determine how apoptosis is reflected in the overall Caspase3 accu-

mulation (AUCcasp3) under these three stimulation conditions (Fig 5B). First, we analyze the
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Fig 5. pJNK and pAKT transients synergistically control the overall Caspase3 levels and modulate the apoptotic

response. (A) Relative contribution of model generated pJNK and pAKT transients corresponding to 5 best fit

parameter sets (ApJNK and ApAKT) towards the corresponding overall Caspase3 accumulation for 8, 12 and 24 h

durations for (i) TNFα, (ii) TPL, (iii) TNFα +TPL stimulation. (B) Depicts the correlation of experimentally measured

accumulated Caspase3 levels (AUCcasp3) (n = 3) with corresponding apoptosis percentage for the stimulation conditions
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experimentally measured apoptosis levels (Fig 1A) with the corresponding accumulated Cas-

pase3 (Fig 1Ciii). For TNFα stimulation condition, the apoptosis percentage did not rise con-

comitantly with the increasing AUCcasp3 (Fig 5Bi). This could probably be due to the activation

of the survival pathway (NFκB), which interferes with the apoptosis process (Fig 2A). When

the NFκB mediated survival signals are interrupted using TPL, there was an enhancement of

Caspase3 accumulation over a 24h time period with an increase in the apoptosis level (Fig

5Bii). Moreover, the proportion of cells undergoing apoptosis increased monotonically with

Caspase3 accumulation until 12 hours, following which no substantial rise in apoptosis (50%

to 80%) occurred with an increase in AUCcasp3 (Fig 5Bii). Similar behavior was observed for

the TNFα +TPL case as well (Fig 5Biii). A comparison of the early phase apoptosis response

for the TPL (Fig 5Bii) and TNFα +TPL (Fig 5Biii) cases shows marginally higher percentage

apoptotic response as that in the former. This suggests that Caspase3 accumulation up to a par-

ticular threshold at the early time point (4-12h) is a pre-requisite to commit cells for apoptosis,

which is only moderately affected by the Caspase3 surge at later time points (24h) for U937

cells. Next, we show the experimentally observed apoptosis levels with the model-predicted

overall Caspase3 accumulation (Fig 5Biv–5Bvi). A comparison of Fig 5Bi–5Biii and 5Biv–5Bvi

demonstrates that the model simulated AUCcasp3 predicts the apoptosis levels as good as that

by those from experimental measurements. This suggests that even though the accumulation

information was not considered in the model training process (Fig 2B), the transients gener-

ated using the estimated model parameters adequately captures the apoptosis response via

AUCcasp3. In summary, both pJNK and pAKT, and their coordinated cross-talk with the NFκB

regulation finetunes the apoptotic response by modulating the overall Caspase3 levels.

Inhibiting pAKT and pJNK signaling alters Caspase3 transient response

Dynamic correlation analysis (previous section) suggests that fine-tuning the apoptotic

response could be achieved by altering the overall Caspase3 dynamics by perturbing the pAKT

and pJNK transients. We introduce these perturbations by exposing U937 cells to either Wort-

mannin (Wort) or SP600125 (SP6). Wort inhibits PI3K mediated pAKT activation (Fig 6A)

[61,62], pJNK activation through MKK4/7 [63–65] and XG activation through NFκB [66]. On

the other hand, SP6 affects both pJNK and pAKT activation via different pathways (Fig 6B)

[67]. SP6 further activates Caspase3 [68] by down regulating Bcl2 activation leading to reduc-

tion in pAKT levels and inhibits MKK4/7 through the AP-1 and Fas driven pathway [67,69–

73]. We incorporate these perturbations using phenomenological terms in the model, which

will henceforth be referred to as inhibitory model. (Details of inhibitory model are described in

S6 Text.)

We first consider the case of Wort inhibition in our model simulations, which demonstrate

that after a transient initial peak, pAKT levels decrease with time under all three stimulation

conditions (Fig 6Ci). This could be due to pJNK playing a significant role in activating pAKT

(Fig 2A). On the contrary, for all three stimulation conditions, after an initial dip, pJNK

dynamics showed a steady increasing trend with an undulation (Fig 6Cii). This could be due

to the RAF-ERK-JNK feedback loop identified using the branch analysis (Fig 4C and 4D and

Table 1). For the case of only TNFα, in the presence of Wort, model predicts a marginal

increase in Caspase3 level (Fig 6Ciii, blue cloud). However, when stimulated only with TPL or

TNFα+TPL, simulations showed a gradual time-dependent increase in the Caspase3 levels

(i) TNFα, (ii) TPL, (iii) TNFα +TPL. (iv-vi) represent correlation of model predicted accumulated Caspase3 levels

(AUCcasp3) (n = 5) with the experimentally measured apoptosis percentage (n = 3) for the three stimulation conditions.

The time points are appropriately color-coded in (B).

https://doi.org/10.1371/journal.pcbi.1010626.g005
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from the initial phase (Fig 6Ciii, red and black clouds). The flux analysis (S12 Fig) demon-

strates that the effect of Wort reduces the inhibitory contributions of pAKT and NFκB fluxes

over Caspase3 dynamics. For all three stimulation conditions, the levels reached in the initial

phase subsequently settles into the corresponding steady level by 24 hours (Fig 6Ciii). To vali-

date these model predictions, we measured the transient levels of pAKT, pJNK and Caspase3

in Wort treated U937 cells under all three stimulation conditions (Fig 6Civ–6Cvi). (A compar-

ison of the model predictions and the corresponding measurements with those obtained for

the case of no Wort inhibition is presented in S6 Text.) The experimentally measured pAKT

and Caspase3 dynamics corroborated qualitatively with the theoretical model predictions (Fig

6Ci, 6Ciii, 6Civ and 6Cvi). However, the sustained very low fold-change detected experimen-

tally for pJNK could not be predicted by the model simulations (Fig 6Cii and 6Cv), which we

attribute to poor estimation of certain kinetic parameters related to a major branch involving

RAF-ERK-JNK feedback loop.

We next investigate the effect of SP6 inhibition. The model predicted trend for pAKT,

pJNK and Caspase3 were by and large similar to those obtained for the case of Wort inhibition

for respective stimulation conditions (Fig 6Di–6Diii). (Inhibitory model predictions along

with the experimental measurements under three different stimulation conditions are

Fig 6. Model prediction and experimental validation of the marker proteins under the treatment of Wortmannin

(Wort) and SP600125 (SP6) inhibitor. (A) and (B), respectively schematically represents the inhibitory action of

Wort and SP6. (C) Effect of Wort inhibition on (i) pAKT, (ii) pJNK, and (iii) Caspase3 as predicted by model

simulations. The corresponding experimental validations are in (iv), (v), and (vi), respectively. (D) Effect of SP6

inhibition on (i) pAKT, (ii) pJNK, and (iii) Caspase3 as predicted by model simulations. The corresponding

experimental validations are in (iv), (v), and (vi), respectively. The rate constant values used for the inhibitory

interactions are given in the caption of S12 and S13 Figs.

https://doi.org/10.1371/journal.pcbi.1010626.g006
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contrasted with those obtained for the case sans SP6 inhibition in S12 Fig) The experimentally

measured dynamics of these proteins in SP6 treated U937 cells qualitatively substantiate the

model predictions for all three stimulation conditions (Fig 6Div–6Dvi). Specifically, for the

TPL and TNFα+TPL stimulation conditions, the rise in the Caspase3 levels were delayed as

compared to model simulations (Fig 6Diii and 6Dvi).

Flux analysis of the inhibitory model simulations (S6 Text) revealed that in the presence of

Wort, weak inhibition of JNK activation by MKK4/7 was required to capture the qualitative

experimental trend of Caspase3 and pAKT transients. Activation of JNK is primarily caused

by MKK4/7 and C1P under normal conditions (Fig 3Aii, 3Bii and 3Cii). Under Wort inhibi-

tory conditions, the fluxes to JNK from these interactions almost remained unaltered (S12 Fig,

ii, v, viii) leading to poor model prediction of pJNK dynamics. Experiments show that tran-

sient Caspase3 rise correlates with drop in the pAKT transient under TPL and TNFα+TPL

conditions. However, for these two conditions, in the model predictions, the pAKT transients

are maintained at a higher steady-level, which is above that for the case of only TNFα treat-

ment. This is the reason why the model underestimates the relative rise in the Caspase3 tran-

sients for TPL and TNFα+TPL treatment under Wort inhibitory conditions. Flux due to pJNK

maintains a higher pAKT level at later time points (S12 Fig, i, iv, vii). On the other hand, in the

case of SP6 mediated inhibition, the flux analysis reveals that MKK4/7 mediated pJNK activa-

tion is completely shut down causing the early phase dip in pJNK and thereby in pAKT tran-

sients as well (S13 Fig, ii, v, viii). As a consequence, the model predicts the rise in the Caspase3

dynamics occurring much earlier than that observed in experiments (Fig 6Diii). Moreover, for

TPL and TNFα+TPL cases, except TNFR1 mediated Caspase3 activation, all other fluxes con-

tribute to Caspase3 transients in a similar manner (Fig 6Diii). This substantiates the experi-

mentally observed fact (Fig 6Div) that the Caspase3 transients are similar for TPL and TNFα
+TPL treatments.

Overall, our model could qualitatively predict the modulation in Caspase3 dynamic

response under all the three experimental conditions (TNFα, TPL and TNFα +TPL) in the

presence of either Wort or SP6 inhibitor as substantiated by the experimental data. Thus,

model is able to predict the cell-fate decision in U937 cells for which the AUCcasp3 can act as a

suitable intracellular signature. This leads to the hypothesis that fine-tuning apoptosis can be

achieved by controlling AUCcasp3.

Model adequately predicts apoptotic response in U937 cells under all

stimulation conditions

In order to test the above hypothesis, we contrast the model predicted apoptotic response with

those observed experimentally when U937 cells are treated with Wort or SP6 inhibitors under

all three stimulation conditions (TNFα, TPL, TNFα +TPL). For predicting apoptosis level

using the model simulated AUCcasp3 at a certain time, we assume the correlation between

AUCcasp3 and apoptosis in Fig 5Biv–5Bvi as a calibration for the three stimulation conditions.

(Note that the inhibitory action via Wort or SP6 are on signaling entities upstream of Cas-

pase3. Therefore, the relationship obtained between the AUCcasp3 and apoptosis under non-

inhibitory conditions (Fig 5Biv–5Bvi) would continue to hold under inhibitory conditions as

well.) In order to find the apoptotic response for the entire range of AUCcasp3 in Fig 5Biv–5Bvi,

we quantify the correlation between model generated AUCcasp3 vs experimentally observed

apoptosis using a polynomial curve fit. (Details of the fit and identifiability of the associated

parameters are provided in S7 Text and S6 Table.) Note that the curve fitting was performed

using the hAUCcasp3i, which is an average over that estimated using five best-fit model simu-

lated trajectories. Next, using the Wort or SP6 inhibitory model simulations, for a certain time
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duration under a specific stimulation condition, we estimated the hAUCcasp3i, which was

incorporated in the polynomial fit to arrive at the model predicted apoptosis percentage

(Fig 7). The corresponding apoptosis percentage in U937 cells was measured experimentally

(Methods).

For the Wort inhibition case under only TNFα stimulation condition, the model underpre-

dicted the experimentally observed apoptosis percentage (Fig 7Ai). This is due to poor predic-

tion of the pJNK level by the Wort inhibitory model (Fig 6Aii, blue). This deviation is reflected

in the lower levels of Caspase3 transient (Fig 6Aiii, blue) causing decreased hAUCcasp3i. For the

TPL and TNFα +TPL cases (Fig 7Aii–7Aiii), the Wort inhibitory model predicts the experi-

mental apoptosis percentage at all time durations other than 4h. Note that after 16h the experi-

mental apoptosis levels become insensitive to the marginal increment in hAUCcasp3i under

both these conditions (Fig 7Aiii).

The SP6 inhibitory model predicted apoptosis levels match the experimental apoptotic

measurements in U937 cells for all the time points during only TNFα stimulation (Fig 7Bi).

For the case of TPL and TNFα +TPL stimulations, for intermediate time points (8, 12, 16h),

the experimental observations corroborate model predictions (Fig 7Bii and 7Biii). However,

for these two conditions, the model over-predicts the apoptosis levels at earlier and later dura-

tion. The over-prediction at the early time point (4 h) could be due to model predicting signifi-

cantly higher levels of initial Caspase3 transients as compared to the experimental

observations (Fig 6Biii and 6Biv). Experimentally observed apoptosis response being insensi-

tive to accumulated Caspase3 levels (Fig 7Bii and 7Biii) could explain the overprediction by

the model at later time points (Fig 6Diii). Juxtaposition of model predicted hAUCcasp3i and

Fig 7. Comparison of experimental and model predicted apoptosis percentage under (A) Wort and (B) SP6

inhibitory conditions. (i), (ii), and (iii), respectively correspond to the predictions for TNFα, TPL, and TNFα +TPL

stimulation conditions. While 5 best fit parameters were considered for model predictions, those of experiments are

based on triplicates. The time points are appropriately color-coded in (B).

https://doi.org/10.1371/journal.pcbi.1010626.g007
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apoptosis leading to a correlation can help contrasting the experimentally observed and model

simulation predicted apoptotic cell-fate response. Such a comparison can be achieved by

inhibiting other entities in the network as well.

Discussion and conclusion

Dynamic crosstalk among intracellular signaling entities plays a crucial role in regulating the

cell-fate as a response to the pleiotropic cytokine TNFα stimulation. In this study, we present an

experimental data-constrained mathematical model consisting of 17 entities and 25 interactions

that can predict the apoptotic response under different physiological conditions related to

TNFα signaling network. The experimental data represents the dynamical response due to acti-

vation of signaling pathways downstream of TNFR1 stimulated by the soluble 17.3 kDa TNFα.

(Note that signaling due to TNFR2, activated only by 26 kDa transmembrane TNFα, and its

downstream signaling are ignored.) Using systems biology-based approaches, we unravel the

synergistic interdependence of pAKT and pJNK transient response and their dynamic cross-

talk modulating apoptosis via Caspase3 dynamics in U937 cells in a semi-quantitative manner.

While TNFα signaling maintains a delicate balance between the survival and apoptotic

responses [10], tilting the balance towards apoptosis by inhibiting signaling downstream

NFκB has been demonstrated [74]. There are several interconnected signaling branches that

could influence this cell-death decision [75]. Our experimental findings unfold that arresting

survival signaling via NFκB pathway using Triptolide (TPL) aided in quantifying the transient

influence of pJNK and pAKT activity on the apoptotic response in U937 cells (Figs 1 and 5A).

The delayed Caspase3 response observed in our experiments and predicted by the model is in

line with those reported in other cell lines [76]. By monitoring NFκB and Caspase signaling

for just 1–2 hours, Lee et al. revealed that a 1-min TNFα pulse can be more efficient at killing

cells than a 1-hour pulse [46]. Timescale of apoptotic response and the upstream signaling

influencing the same is cell-type specific. Our model analysis revealed that the nature of influ-

ence of the transients of the signaling entities on cell-death is time-dependent.

For U937 cells, we identified that the influence in the early phase (< 8 hours) is distinct to

that in the late phase (8 to 24 hours) (Fig 8). This was deciphered by tracking the nature of syn-

ergism in signal flow via different branches using the branch analysis (Fig 4). For example, the

signal transduction requires NFκB!pAKT branch to dynamically switch from a positive to

negative synergism across the two phases (Fig 8). The low Caspase3 levels at the early phase

and the subsequent rise in the late phase (Fig 2) can be attributed to the early phase negative

synergism in the NFκB!pJNK branch being absent in the late phase (Fig 8). Moreover, the

positive synergism elicited by the branches originating from TNFR1 involving the RAF-ERK1/

2-JNK positive feedback loop influences the dynamics of pAKT in both early and late phases

(Fig 8). Combined effect of the dynamically varying synergism in these branches governs the

Caspase3 transients via pAKT and pJNK, and therefore the phenotypic apoptotic response

(Fig 5B).

Traditional approach of discrete-level modeling identified that pJNK and pAKT can influ-

ence the TNFα mediated apoptotic response but does not lead to precise extent of dynamic

cross-talk [43,44]. The reaction flux analysis along with the branch analysis revealed the causal

mechanism regulating apoptotic response involving the dynamic cross-talks among the key

intracellular entities pJNK and pAKT (Figs 3 and 4). We identified that pJNK transient

response and PI3K play crucial roles in controlling pAKT dynamics. While PI3K primarily

influences the late-phase activation of pAKT, pJNK affects it over the entire 24 h duration (Fig

3). Such a different early and late-phase responses of the marker proteins have also been

observed during p53 signaling induced by DNA damage response [77–80].
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Since cell-death is a long-term phenotypic response, identifying the quantitative relation-

ship between the intracellular marker levels and the apoptosis can offer strategies for its modu-

lation. Contrary to that observed experimentally, TNFα network model developed by Koh and

Lee predicted that Caspase3 activation predominates at short timescales post-stimulation [81].

This could be attributed to not considering pJNK, which is a crucial Caspase3 regulator, as

shown by our predictions (Fig 5A). While arresting the pro-survival pathways is expected to

alter the cell-death decisions [82,83], our study demonstrates that a semi-quantitative correla-

tion establishes the connection between the Caspase3 dynamics and the apoptotic response

(Fig 5B). The premise of this correlation is to relate the Caspase3 levels over a range of time

duration represented by accumulated levels to the phenotypic response. Therefore, the correla-

tion can serve as a guide for modulating the TNFα mediated cell-death behavior.

Correlation between the model simulated accumulated Caspase3 levels and experimentally

detected apoptosis response enabled prediction of apoptotic phenotype in the presence of

Wortmannin and SP600125 inhibitors (Fig 6). Even though the phenotypic predictions are

valid only in the range of the accumulated Caspase3 levels, the systematic semi-quantitative

approach employed can be easily extended to other perturbative conditions. While this

approach can help gain insights into various therapeutic responses, there is a scope for further

refining the model for improving its predictive abilities. For example, the model did not ade-

quately predict the pJNK transient behavior (Fig 2). This can perhaps be reconciled by intro-

ducing additional pJNK regulating nodes or interactions. Cell-to-cell variability is inherently

present even in our experimental measurements (S1 Text). However, our model, due to its

deterministic nature, is not appropriate to mimic such variabilities. Recent studies have indeed

shown that superimposing stochasticity on a deterministic model could allow accounting for

cell-to-cell variability [45,84]. Thus, the model proposed here can be extended to capture the

ensemble-level behavior. Overall, we demonstrate that predicting the synergistic cross-talk sig-

naling guided qualitative apoptotic phenotypic response is possible even without capturing the

detailed pathway of apoptosis in an explicit manner.

Fig 8. Comparison of time-dependent synergism during the early and late phase signaling cross-talk regulating

Caspase3 activation.

https://doi.org/10.1371/journal.pcbi.1010626.g008
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Materials and methods

M1. Cell culture and reagents

U937 cells were procured from the Cell Repository at National Centre for Cell Science

(NCCS), Pune, India. It was cultured in RPMI-1640, supplemented with 10% fetal bovine

serum (FBS), 2 mmol/l L-glutamine, and 1% antibiotic–antimycotic solution, all procured

from HiMedia (Mumbai, India) with a cell-seeding density of 5×105 cells/ml. Cells were then

collected, pelleted by centrifugation at 1,000 rpm for 5 min at room temperature (RT) and

maintained at 37˚C in a humidified 5% CO2 incubator. 17.3kDa TNFα (Peprotech) was recon-

stituted in double-distilled water to a concentration of 100μg/ml. Triptolide (TPL) (Sigma)

was dissolved in DMSO to a concentration of 1 mg/ml, the stock was stored at −20˚C until

use. Antibodies against different proteins ((phospho-pAKT(pS473)- Alexa 488-tagged anti-

body, phospho-pJNK(pT183/pY185)- PE tagged, and anti-active Caspase3- V450 tagged anti-

body)) were procured from BD Biosciences.

M2. Apoptosis detection using Annexin V/PI staining

U937 cells were plated in 24-well plates. For a certain experimental condition, cells in different

wells were treated with the corresponding stimulation for 4, 8, 12, 16, 20 or 24 h. For those

conditions involving TPL, cells were pre-treated with it for 1 h prior to TNFα addition. After

the completion of the stimulation time, cells were harvested, washed once with PBS, resus-

pended in 1X Annexin binding buffer and stained with FITC-labeled Annexin V and PI (BD

Pharmingen, San Diego, CA, US). Cells were then analyzed on BD FACS Aria (BD Biosci-

ences, San Jose, CA, US) within 30 min of dye addition. For every experimental condition and

time point, three replicates were used.

M3. Intracellular staining with Flowcytometry using Fluorescent Cell

Barcoding (FCB)

U937 cells were seeded in 12 well plates for measuring signaling levels at 12 timepoints over a

span of 24 h. For both TPL and TNFα +TPL stimulation conditions, cells were pre-treated

with TPL for 1hr. After the stimulation, cells were fixed with 4% PFA for 10 min at RT, washed

once with PBS and then transferred to a 96-well plate for further processing. Cells were then

permeabilized with 500μl of 80% chilled methanol on ice for 1 h, and washed in PBS to remove

leftover methanol. Now 50μl of 4 different concentrations (10μg/ml, 2μg/ml, 0.4μg/ml and

0.08μg/ml) of barcoding dye (Alexa-647) was added to the samples (450μl in PBS) making up

the total volume to 500μl and kept on ice for 40min. After the incubation, cells were washed

with 0.5%BSA in PBS to remove unbound dye. Finally, a combo tube was prepared that con-

sisted of 4 different concentrations of the dye and washed thrice with 0.5%BSA in PBS to

remove excess unbound dye. Cells resuspended in 0.5% BSA in PBS, were stained with anti-

bodies against pAKT, pJNK and Caspase3 with dark incubation at RT for 30min. After remov-

ing the unbound antibody, cells resuspended in 300 μl of 0.5% BSA were analyzed for

detecting fluorescence in various channels on a BD FACS Aria flow cytometer. A schematic of

this entire high-throughput protocol is in Fig 9.

M4. Data quantification

The obtained file was then deconvoluted using FlowJo (version 10). Each fluorochrome used

corresponds to a particular protein. Mean Fluorescence Intensity (MFI) of the distribution

was used to calculate the relative fold change of the protein level upon stimulation. Relative
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fold change (FC) at a certain time point is given by

FC ¼
MFIt � MFIDN

MFINeg � MFIDN
ð4Þ

where, MFIt, MFINeg, MFIDN, respectively represent MFI at a certain time t, negative control

(no stimulation (0 h)), and double negative (only cells).

M5. Signaling pathway perturbation with inhibitors

For each of the stimulation conditions, cells were treated with inhibitor Wortmannin (1μM)

or SP600125 (10 μM) for 1 h prior to stimulation. After treatment, cells were stained as per the

method specified earlier. Further the fluorescence emitted by the stained samples were

acquired using BD FACS Aria following which FC at the measured time points were estimated

using Eq (4).

M6. Model kinetic parameter estimation

The model kinetic parameter estimation was performed using the PottersWheel software (ver-

sion 4.1.1) [85] by employing “Trustregion” method with underlying ODEs integrated using

CVODE method. The model system has been optimized ~2000 times by taking the same initial

starting values of the parameters (parameters are globally fitted by considering a logarithmic

parameter space) to fit the experimental data adequately. We considered χ2 value for a certain

parameter set P as the fitting criteria, where χ2 is defined as

w2 Pð Þ ¼
XN

i¼1

yepAKT;i � ypAKTðti; PÞ
s2

� �2

þ
XN

i¼1

yepJNK;i � ypJNKðti; PÞ
s2

� �2

þ
XN

i¼1

yeCasp3;i � yCasp3ðti; PÞ
s2

� �2

ð5Þ

Fig 9. Schematic of high throughput signaling experimentation. Cells are harvested and incubated with inhibitor or

stimulus for the desired time. After incubation, cells are fixed using paraformaldehyde and subsequently permeabilized

with methanol. Four samples, each containing sufficient number of cells, are then incubated with amine-reactive

fluorescent barcoding (FCB) [55,56] dye with different concentrations. These four samples are combined in a combo

tube. After covalent binding, cells in the combo tube are washed several times to remove unbound dye, following

which they are exposed to monoclonal antibody against the intracellular proteins. Fluorescence emitted by cells in the

combo tube is then acquired on a flow cytometer. After acquisition, the samples are analyzed by gating and identifying

individual samples displaying discrete fluorescent intensities (D1, D2, . . . D4) in the FCB channel. Mean fluorescent

intensities of the fluorescence distribution corresponding to individual proteins are captured in different channels

based on the fluorochrome antibody for further analysis.

https://doi.org/10.1371/journal.pcbi.1010626.g009
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where, yepAKT;i; y
e
pJNK;i, and yeCasp3;i represent the mean of the triplicate experimental FC data for

the pAKT, pJNK, Caspase3, respectively at the ith time point. ypAKT(ti; P), ypJNK(ti; P), and

yCasp3(ti; P) are the levels of the respective proteins at the ith time point obtained from model

simulations for a chosen parameter set P. σ is the standard deviation of the experimental data

set. The detailed description of the model development is in S2 Text.

M7. Reaction Flux analysis

For a certain node such as pAKT, the rate law corresponding to every incoming and outgoing

interactions were evaluated at every time point. For a certain interaction, a locus of these over

24 h is its reaction flux trajectory. We repeated this procedure to find the reaction flux trajecto-

ries for the interactions in which pAKT, pJNK and Caspase3 are involved. Details of these are

in S4 Text.

M8. Branch identification

TNFα signaling network (Fig 2A) was converted into an unsigned, interaction digraph. Adja-

cency matrix for the digraph was generated. Subroutine ‘allpaths.m’ in Matlab was used to

identify all paths (or branches) between a pair of entities. Subsequently, for every branch, inter-

actions in it were assigned their respective sign (Tables 1 and S5 as specified in the original

network.

M9. Correlation analysis and Linear regression

For a certain stimulation condition, area under the curve (AUC) was calculated for pAKT,

pJNK and Caspase3 transients up to 8, 12, and 24 h time durations. For model-based AUC,

transients generated using 5 best parameter sets were employed. Linear regression (in R [86])

was carried out using the AUC from all 5 transients to find the constants a and b in overall

pJNK and pAKT contributions in accumulated Caspase3 captured in

AUCcasp3 ¼ a� AUCpJNK þ b� AUCpAKT ð6Þ

Relative contributions were estimated by normalizing all terms in Eq (3) with hAUCcasp3i,

the average of AUCcasp3 across replicates. Thus, the average relative contributions of pAKT

(ApAKT) and pJNK (ApJNK), respectively are defined as

ApAKT ¼ h
b� AUCpAKT

hAUCcasp3i
i ð7Þ

and

ApJNK ¼ h
a� AUCpJNK

hAUCcasp3i
i ð8Þ

where, h.i represents average across replicates. Note that ApJNK+ApAKT = 1.

Supporting information

S1 Text. Apoptosis and intracellular marker protein level detection.

(PDF)

S2 Text. Detailed model of the TNFα signaling network capturing the cross-talk between

different entities.

(PDF)
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S3 Text. Prediction and sensitivity analysis of transient dynamics of different entities from

the proposed model.

(PDF)

S4 Text. Reaction flux analysis of the three marker proteins.

(PDF)

S5 Text. Branch analysis quantifying the synergistic dynamic cross-talk signaling.

(PDF)

S6 Text. Model analysis under inhibitory conditions—Wortmannin (Wort) and SP600125

(SP6).

(PDF)

S7 Text. Semi-quantitative relationship between hAUCcasp3i and Apoptosis levels.

(PDF)

S1 Fig. Effect of TPL on cell survival. (A) Dose-response of TPL on cell-survival. (B) Effect of

TPL pre-treatment duration on apoptosis. Note that negative Apoptosis % in (B) for a few

cases are due to negative control (only cells) being more than that when treated.

(TIFF)

S2 Fig. Detailed TNFα signaling network. Activation and inhibitory actions are represented

by solid (black) and dashed (red) lines, respectively. Green and orange boxes, respectively rep-

resent the inactive and active forms of an entity. The model contains 34 species and 81 param-

eters including 3 scaling constants.

(TIFF)

S3 Fig. Generalized methodology to identify best suitable model based on goodness of fit.

The proposed models were mapped with experimental data and robust model was selected by

performing parameter optimization and associated identifiability analysis.

(TIFF)

S4 Fig. Boxplot showing deviation of the estimated kinetic parameters around its median.

(TIFF)

S5 Fig. Model trajectories for best fitted parameter set with experimental measurements.

The best-fitted trajectories (red) of ~2000 fits with the experimental FC (circles with appropri-

ate error bars) for pAKT, pJNK and Caspase3 under the three stimulation conditions. The

errors are estimated by using a standard error model.

(TIFF)

S6 Fig. Model predicted time course simulation of fold activation (FC) of transient varying

different concentrations of TNFα. Simulated trajectory of FC by varying TNFα in (A) the

absence of TPL, (B) presence of low dose TPL (10nM) and (C) presence of high dose TPL

(60nM).

(TIFF)

S7 Fig. NFκB dynamics under different stimulation conditions. Trajectories of NFκB pro-

tein obtained by simulating the model with best-fit parameter set (S4 Table).

(TIFF)

S8 Fig. Comparison of model predicted transients with experimental measurements for

TPL-10nM in the presence of TNFα (100ng/ml). The green lines represent the simulated
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trajectories and the black dots with corresponding error bars (n = 3) indicate the experimental

measurements.

(TIFF)

S9 Fig. Relative influence of the cross-talk related parameters on the predicted dynamics

for the case of TPL-10nM in the presence of TNFα (100ng/ml). Fk and FWT, respectively

captures the area under the transient for the case of deviation in a certain cross-talk parameter

and that for the case of the best fit parameter. Note that a deviation of 20% (as specified in the

third column of Table I in S3 Text) from the best fit values in Table I in S3 Text was considered

for this analysis.

(TIFF)

S10 Fig. Temporal evolution of fluxes contributing to the dynamics of pAKT, pJNK and

Caspase3 under the three stimulation conditions. Rows correspond to different stimulation

conditions. Expression for these fluxes (Ai, Ji and Ci, for all i) are provided in S4 Table.

(TIFF)

S11 Fig. Time-dependent synergism due to all branches from (A) NFκB to pAKT, (B)

TNFR1 to pAKT, (C) NFκB to pJNK, and (D) TNFR1 to pJNK as listed in S5 Table.

(TIFF)

S12 Fig. Evolution of fluxes from important entities controlling the dynamics of pAKT,

pJNK and Caspase3 under different experimental conditions in the presence and absence

of Wort inhibitor. Flux analysis of different nodes on controlling of pAKT, pJNK and Cas-

pase3 under different experimental conditions in the presence of Wort inhibitor. The dotted

line represents when simulation has been done at 0 nM (no inhibitor) of Wort and the solid

line depicts the trajectories for 1000 nM of Wort. The contribution from each specific node in

the time profile of marker protein has been dissected separately by considering various terms

in the corresponding model equation in S4 Table. Wherever necessary, the inhibitory action

related modifications to the relevant rate terms were considered. Inhibitory parameters used

are Kiak = 0.001 nM−1, Kkim = 0.02 nM−1, and Kkxg = 0.00005 nM−1.

(TIFF)

S13 Fig. Evolution of fluxes from important entities controlling the dynamics of pAKT,

pJNK and Caspase3 under different experimental conditions in the presence and absence

of SP6 inhibitor. Flux analysis of different nodes on controlling of pAKT, pJNK and Caspase3

under different experimental conditions in the presence of SP6 inhibitor. The dotted line rep-

resents when simulation has been done at 0 nM (no inhibitor) SP6 and the solid line depicts

the trajectories for 10000 nM of SP6. The contribution from each specific node in the time pro-

file of marker protein has been dissected separately by considering various terms in the corre-

sponding model equation in S4 Table. Wherever necessary, the inhibitory action related

modifications to the relevant rate terms were considered. Inhibitory parameters used are Kkib

= 0.0002 nM-1 and Kkis = 0.005 nM−1.

(TIFF)

S1 Table. Ordinary differential equations of the TNFα signaling network and associated

algebraic relations.

(PDF)

S2 Table. Description of the entities in the TNFα signaling network model and its state.

(PDF)
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S3 Table. Definition of the kinetic parameters involved in the model.

(PDF)

S4 Table. Reaction fluxes affecting the pJNK, pAKT and Caspase3 dynamics.

(PDF)

S5 Table. Branches originating from NFκB or TNFR1 and ending in the signaling entities

pAKT or pJNK.

(PDF)

S6 Table. Coefficients of the fourth order polynomial (Eq S7.1 in S7 Text) under different

stimulation conditions.

(PDF)
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