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Abstract
Cancer is a multifactorial disease. Aberrant functioning of the underlying
complex signaling network that orchestrates cellular response to external or
internal cues governs incidence, progression, and recurrence of cancer. Detailed
understanding of cancer’s etiology can offer useful insights into arriving at novel
therapeutic and diseasemanagement strategies. Such an understanding formost
cancers is currently limited due to unavailability of a predictive large-scale, inte-
grated signalingmodel accounting for all tumor orchestrating factors.We suggest
that the potential of Boolean dynamic (BD) modeling approaches, though qual-
itative, can be harnessed for developing holistic models capturing multi-scale,
multi-cellular signaling processes involved in cancer incidence and progression.
We believe that constraining such an integrated BD model with variety of
omics data at different scales from laboratory and clinical settings could offer
deeper insights into causal mechanisms governing the disease leading to better
prognosis. We review the recent literature employing different BD modeling
strategies to model variety of cancer signaling programs leading to identification
of cancer-specific prognostic markers such as SMAD proteins, which may also
serve as early predictors of tumor cells hijacking the epithelial-mesenchymal
plasticity program. In silico simulations of BD models of different cancer
signaling networks combined with attractor landscape analysis and validated
with experimental data predicted the nature of short- and long-term response of
standard targeted therapeutic agents such asNutlin-3, a smallmolecule inhibitor
for p53-MDM2 interaction. BD simulations also offered a mechanistic view of
emerging resistance to drugs such as Trastuzumab for HER+ breast cancer,
analysis of which suggested new combination therapies to circumvent them.
We believe future improvements in BD modeling techniques, and tools can lead
to development of a comprehensive platform that can drive holistic approaches
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toward better decision-making in the clinical settings, and thereby help identify
novel therapeutic strategies for improved cancer treatment at personalised levels.

KEYWORDS
Boolean dynamicmodeling, cancer signaling, drug resistance, drug-response, prognosticmark-
ers, tumor progression

1 INTRODUCTION

Cancer is a multifactorial disease [1–3]. Cancer can be
viewed as a result of disturbances of a delicate balance
between cellular states, specifically proliferation and cell-
death [4]. Identifying these disturbances and understand-
ing their deleterious effects can help in better cancer
prognosis, arresting tumor progression and improving
the therapeutics needed for combating the disease. Sys-
tems biology-based Boolean dynamic (BD) modeling is
an emerging approach for unraveling these disturbances
which is paramount to developing strategies for restoring
the delicate balance.
Worldwide, cancer incidence is 19.3million per year, and

cancer deaths stands at ∼9.9 million in 2020 [5]. Cancer
incidence is expected to increase by ∼55% to 30.2 million
per year by 2040 [6,7]. Current cancer care costs US$ ∼1.16
trillion per year [8]. Large incidence rates coupled with ris-
ing associated costs makes the disease a public health pri-
ority and calls for arriving at effective strategies for pre-
venting, managing, and combating it [7].
Cellular states are dynamically orchestrated by the

underlying molecular network that responds to various
external and internal stimuli [9]. Disturbances leading to
dysregulation of a normal cellular state could be attributed
tomutations affectingwiring of the network [2,9,10]. These
mutations could be in proto-oncogenes and tumor supress-
ing genes present in normal healthy cells. Influence of
these disturbances could be far reaching, such as trigger-
ingmetabolic reprogramming [10–15], evading apoptosis, a
form of regulated cell-death [4,16–19]. These disturbances
are caused by oncogenic or non-oncogenic factors which
alter the information flow through the network [20]. Onco-
genic factors include overactive forms of certain proto-
oncogenes whose gain-in-function mutation drives cancer
initiation. Non-oncogenic factors refer to loss-of-function
of tumor suppressor genes leading to cancer development
[21]. Identifying sections of themolecular network that are
dysfunctional, the normal processes that are disturbed and
the extent of ensuing damage can offer novel insights to
diagnose, combat, and prevent these diseases [22].
Therapies for treating cancer capitalize on the specific

molecular aspects in cancer cells that delineate them from

normal cells. Conventional therapies using first or second
line of treatment take advantage of the genetic instability
reflecting deficiencies in DNA repair in the cancer cells
[23]. Alkylating agents such as chlorambucil, cisplatin are
used as first line chemotherapeutic drugs for inducing
DNA damage and thereby arresting cancer cell prolifer-
ation. A second line of treatment includes use of drugs
such as methotrexate or of ionizing radiation. Traditional
cytotoxic drugs and radiation therapy are typically weakly
selective [21,23]. As a direct consequence, these therapies
may affect other normal cells and thereby causing severe
undesired side-effects [24–26]. This led to the advent of
targeted therapy which involves use of drugs targeting
a cancer-specific malfunction such as those caused by
a mutation. Targeted therapies for various cancers offer
improved remission and overall survival as compared
to the conventional approaches [24–26]. However, they
are often hampered by natural or acquired resistance to
drugs. Knowledge of the mechanisms governing a cancer
can offer insights toward addressing this challenge. While
identification of precise causal mechanisms governing a
particular cancer is often difficult, even partial knowledge
of these can help finding effective therapy that may
circumvent emergence of drug resistance [27]. A system-
atic assessment of a system-level model of oncological
signaling which orchestrates cell fate can help discern
such causal mechanisms. Further, such a model can serve
as an in silico platform for rigorously testing system-
level effects of a certain drug and also provide pointers
for novel therapeutic approaches and other clinical
decisions [28].
Systems biology driven cancer models permit inte-

gration of oncological signaling in a tumor cell and
its microenvironment, and regulation at protein-protein
and genetic levels. Among various systems-level mod-
eling approaches [29], logical models, such as those
based on Boolean networks, enable unraveling qualita-
tive principles that elucidate mechanisms governing var-
ious behaviors elicited by cells [30–34] and particularly
that of oncological outcomes [35]. Since its first use
[36], BD models are routinely used in characterizing sev-
eral naturally observed attributes of biological systems
such as underlying complexity [37–39], self-organizing
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principles [40], redundancy, [41] and other nonlinear
aspects [42,43]. BD approach offers a significant promise
for understanding cancer’s etiology from a signaling
dynamics perspective and help identifying novel targeted
therapies [35,44].
The present review is concerned primarily with BD

modeling of cancer signaling networks with an emphasis
on identifying principles governing various cancer-related
processes. In the next section, we present a primer on
BD modeling, which can be skipped by readers who are
either familiar with it or are primarily interested in the BD
modeling-based predictions. In the subsequent three sec-
tions, we review various BDmodeling-based contributions
leading to identification of diagnostic markers, decipher-
ingmechanisms governing cancer progression, and under-
standing drug responses elicited by tumors.

2 BDMODELING OF BIOLOGICAL
NETWORKS

Building a BD model of a normal or diseased cell necessi-
tates availability of an underlying molecular network gov-
erning the signal transduction process. A biological net-
work consists of entities such as proteins, genes, small
molecules, and the causal relationships as interactions
between them. In this section, we first present a general
formalism forBDmodeling. Subsequently,we describe sys-
tematic approaches for constructing cancer-specific anno-
tated signaling network.

2.1 A primer on BDmodeling

In this primer, we describe the BD modeling approach, its
implementation and associated strategies using a cancer
progression signaling network as a motivating example.
These are applicable to signaling networks such as protein-
protein networks (PPNs) [45], gene-transcriptional net-
works (GTNs) [46], multi-cellular networks, [47,48] and a
combination thereof [49,50]. PPNs consisting only of inter-
acting proteins are typically employed in cancer model-
ing when the objective is to understand how signal flow
from a receptor is disturbed due to a malfunctioning entity
in the network. Moreover, it is considered for identify-
ing potential diagnostic and therapeutic protein mark-
ers. On the other hand, GTNs typically consist of tran-
scription factors as entities. An interaction in a GTN rep-
resents regulation of its synthesis via the transcription
and translation machinery by other transcription factors.
GTNs are considered in cancer modeling for a variety
of purposes such as understanding reprogramming trig-
gered by oncogenic genetic abnormalities [51,52]. Multi-

F IGURE 1 Boolean dynamic modeling. (A) Six-node network
based on TGFβ signaling in cancer cells.[53] Nodes n1, n2, n3, n4, n5,
and n6 represent TGFβ, miRNA200, Snail1, Zeb1, Ovol2, and
miRNA34a, respectively. Black and grey circles, respectively, are
proteins and microRNAs. Dashed arrow (− →) captures activation
of n3 by node n1. While solid arrows (→) represent transcriptional
activation, hammers ( ) represent transcriptional inhibition. (B)
Boolean functions 𝑓1, 𝑓2, … , 𝑓6 corresponding to the six nodes in
(A). 𝜏 captures the timescale of activation of the node, applicable
only for the case of deterministic asynchronous update method.
𝑣1, 𝑣2, … , 𝑣6 represent the Boolean values corresponding to the six
nodes in (A)

cellular networks consist of multiple cells themselves as
nodes or as compartments with sub-networks in each of
them.
For demonstrating BDmodeling of biological networks,

we consider a six-node network consisting of signed,
directed interactions based on TGFβ signaling in a can-
cer cell [53] as a motivating example (Figure 1A). TGFβ
signaling is implicated in cancer progression [54]. TGFβ,
a secreted cytokine protein, upon binding to its receptor
triggers signaling via MAPK cascade that culminates in
activating the synthesis of Snail1 protein. Snail1 transcrip-
tion factor activates Zeb1 and represses miRNA200. More-
over, Snail1 represses the transcription of miRNA34a and
in turn miRNA34a inhibits Snail1 protein by modulating
its translation. Thus, Snail1 and miRNA34a are locked in a
double negative feedback loop. A similar double negative
feedback loop exists between Zeb1 andmiRNA200. On the
other hand, Ovol2 and Zeb1 interlock each other via a tran-
scriptional double negative feedback loop. Further, Zeb1
and Ovol2 transcription factors repress miRNA34a and the
synthesis of TGFβ, respectively. For the sake of brevity,
we represent TGFβ, miRNA200, Snail1, Zeb1, Ovol2, and
miRNA34a, respectively as n1, n2, . . . , n6.
BD network model : A node (ni) in the network is

assumed a Boolean variable taking a logical value FALSE
or TRUE captured by {𝑣𝑖 = 0 𝑜𝑟 1}, respectively, repre-
senting inactive, that is, not-expressed (OFF) or active,
that is, expressed (ON) forms of the entity. In case of
proteins, expressed and not-expressed reflect high and
low concentrations, respectively. Node ni is associated
with a Boolean function fi consisting of logical opera-
tions AND, OR, or NOT governed m-logical-rules cor-
responding to m binary inputs to it. fi determines the
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TABLE 1 States reached in the first few timesteps starting from initial state ( s0 = 101001) using synchronous (S), deterministic
asynchronous (DA), general asynchronous (GA), and random order asynchronous (ROA) update schemes. Nodes updated at a time t using
the Boolean functions in Figure 1B are in red with the value of all others retained as is. While FP reached for S, and DA methods are specified
by the state at t = ∞, that for GA and ROA methods depend respectively on randomly chosen update order and the randomly chosen
permutations at every 𝑡. For the case of DA, timescale 𝜏 is specified in Figure 1B. Permutations used for ROA for 𝑡 = 1, 2, 3, respectively, are
431562, 564132, and 164325

Nodes S DA GA ROA
t→ 1 2 3 ∞ 1 2 3 ∞ 1 2 3 1 2 3
n1 1 0 1 0 1 1 1 0 1 1 1 1 1 1
n2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n3 0 0 0 0 1 1 0 0 1 1 1 0 0 0
n4 1 0 0 0 0 0 0 0 0 0 0 1 0 0
n5 1 0 1 1 0 1 1 1 0 0 1 0 0 1
n6 1 1 1 1 1 1 1 1 1 1 1 1 1 1

value taken by ni due to the logical operations resulting
from m inputs. Thus, the BD of the six-node network
can be captured by the dynamics of the variables {𝑣𝑖 =
0 𝑜𝑟 1, ∀𝑖} governed by the functions {𝑓𝑖, ∀𝑖} (Figure 1B).
For example, n2 and n5 inhibit n1 resulting in 𝑓1(𝑣2, 𝑣5) =

𝑁𝑂𝑇(𝑣2) 𝑂𝑅 𝑁𝑂𝑇(𝑣5), where an OR logic is assumed for
the two inhibitory inputs (Figure 1). The dynamics to
the Boolean model is introduced by updating 𝑣𝑖 using 𝑓𝑖
evaluated at the prior values of those nodes contribut-
ing to the logical-rules in it [36]. The value taken by 𝑣𝑖
depends on the update scheme adopted, which we discuss
next.
A synchronous (S) update scheme is one where 𝑣𝑖∀𝑖

is updated simultaneously, that is, at time 𝑡 + 1, 𝑣𝑡+1
𝑖

=

𝑓𝑖 (𝑣
𝑡
1
, 𝑣𝑡

2
, .., 𝑣𝑡

6
) [46,55–57]. Starting from a random ini-

tial state 𝑠0 = {𝑣0
1
, 𝑣0

2
, 𝑣0

3
, 𝑣0

4
, 𝑣05, 𝑣

0
6
} = {1, 0, 1, 0, 0, 1}, one

S update results in network’s state (𝑠1) being 110111,
with each digit representing the Boolean value (Table 1)
taken by the corresponding node [43,58]. For the sake of
brevity, henceforth, a network’s state will be presented as
six binary digits randomly assigned to six nodes in Fig-
ure 1A. Upon repeated updating, after visiting several tran-
sient states, the network reaches a Boolean steady state of
010011 (Table 1). Such a steady state is referred to as an
absorbing-state or fixed-point (FP) attractor or FP. Set of
initial states culminating in FP forms its basin of attrac-
tor. Note that value taken by nodes at FP indicates the
active or inactive entities in the cell under homeosta-
sis and thereby reflecting its phenotype. Besides FPs, a
network can also reach cyclic attractors, in which tran-
sients hover around periodic sequence of states [59]. S
update method is known to lead to several spurious cyclic
attractors [59].
In biological systems, all nodes are not necessarily acti-

vated simultaneously. Asynchronous update scheme via
deterministic asynchronous (DA), general asynchronous
(GA) and random-order asynchronous (ROA) methods

permits staggered updating of nodes [43,60]. Nodes to
be updated are either randomly chosen or specified by
a priori known discrete activation timescale 𝜏 for every
entity [43,60]. For DA method, at every 𝑡, only nodes
with 𝜏 ≤ 𝑡 are updated [48]. Table 1 shows 𝑠1, 𝑠2, 𝑠3, and
𝑠∞(FP) obtained by starting from 𝑠0. FP reached from
an initial state is identical and unique for both S and
DA methods. On the other hand, GA and ROA methods
are applicable when 𝜏 is unavailable and further, permit
capturing stochasticity, a phenomenon naturally present
in biological systems [61,62]. In GA method, at every 𝑡,
a randomly chosen node is updated leading to reaching
an update-order dependent FP from an initial state [45].
Same 𝑠0 leads to different dynamic states for S, DA, and
GA methods (Table 1). In ROA method, at every 𝑡, 1.
updating is further resolved into as many intervals as
that of the number of nodes, and 2. all nodes are updated
in a certain sequence (permutations), chosen uniformly
randomly [50]. GA approach captures the stochasticity
due to the cascading effect of updating randomly chosen
individual nodes over several timesteps. On the other
hand, ROA allows incorporating the stochastic behavior
originating from the interdependency of the nodes at all
timesteps. Table 1 shows states reached in three succes-
sive instances, each employing different permutations,
with 𝑠0 = 101001. All three update methods can lead
to cyclic attractors. In fact, the spurious cyclic attractors
predicted by the S method can be circumvented by using
asynchronous update schemes [59]. However, GA and
ROA can in addition lead to complex attractors wherein
the transients meander over a set of states in no specific
order.
An extension of a BD model is the multivalued discrete

dynamic network model wherein 𝑣𝑖 can take multiple
integers [31]. This allows capturing varying levels of each
of the nodes. Further, every rule in the function governing
the dynamics of a node is scaled with a weight factor that
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F IGURE 2 (A) Complete state transition graph (STG) showing states (dots) and one-step transitions (arrows) between them obtained
using synchronous update method. Self-arrow to a state indicates FP. Red dots show the transients obtained to reach the FP 010011 (green)
with initial state s0 being 101001. Orange dot represents FP 101100. (B) Complete STG obtained using ROA update method. (C) Partial STG, a
section of the complete STG in (B), consisting of seven states (dots highlighted in [B]) and all one-step transitions between them. Initial state
is 𝑠0 = 101001. Probability of reaching FPs from 𝑠0 is shown within the self-arrow. Numbers (in red) placed next to the one-step transition
arrow captures the associated transition probability calculated by incorporating the corresponding number of permutations in Table 2 into
Equation (1)

captures the multivalued nature of 𝑣𝑖 . Simulations of the
discrete dynamics of the model using the multivalued
𝑣𝑖 and the modified functions are performed using syn-
chronous and asynchronous update schemes described
above. Besides the ensuing computational complexities,
deciding the range for the multivalued variables is often a
challenge. A comprehensive list of toolboxes for perform-
ing discrete dynamic model simulations is available at The
CoLoMoTo consortium [63].
Long-term behaviour of a BDmodel : Analyzing the tran-

sients, due to one-step transitions, reached while travers-
ing from 𝑠0 to desired FP can offer insights into network’s
inclination to reach a phenotype. A collection of such
one-step transitions achieved by starting from all possi-
ble 64 ( = 26 ) initial states is the six-node network’s state-
transition-graph (STG) which has states as nodes con-
nected by one-step transitions as directed interactions and
can be constructed for all four update methods [59]. For
the case of synchronous update, Figure 2A shows the com-
plete STG. The states reached while traversing from 𝑠0 =

101001 to reach the FP 010011 are captured in Figure 2A
(red dots). STG also shows that the FP 101100 (orange
dot) can be reached via synchronous update only when
the initial state is itself. Thus, all states other than FP
101100 belong to the basin of attraction of FP 010011. Note
that the path taken to reach an FP from an initial state
is unique when S update method is employed, as corrob-
orated by the STG for the six-node network (Figure 2A).
On the contrary, the path traversed to reach an FP start-
ing from an initial state is non-unique for the case of GA
and ROAmethods. Thus, stochasticity incorporated in GA
andROAmethods permits expansion of the basin of attrac-
tors for reaching different FPs, a feature exhibited by real
networks [45]. In Figure 2B, we show the complete STG

for the six-node network when ROA method is employed.
STG captures the permutation-dependent path to reach
an attractor from any state that the network can take.
For example, starting from 𝑠0 = 101001, one-step transi-
tions caused by permutations 451236 and 416325 lead to
states 100101 and FP 101100, respectively. Thus, depend-
ing upon the path dictated by the permutations chosen
for the intermediate timesteps, ROA method takes 𝑠0 =
101001 to either 010011 or 101100 FP, as shown in the par-
tial STG in Figure 2C. Thus, multiple paths could lead
to same FP. Note that multiple permutations could cause
same one-step transition. For ROA method, since every
one-step transition will have an underlying permutation,
STG will have utmost 46, 080 ( = 64 × 6! = 64 × 720)

transitions. For a large network, finding complete STG
is computationally tedious. However, experience suggests
that a much smaller STG could aptly capture the required
characteristics, particularly that of the driver entities that
govern the network’s dynamics and of the attractors.
Ability of a network to settle into an FP is quantified

by the probability which can be estimated from the STG.
This probability can help unravel network’s features such
as driver entities. The first step in this quantification pro-
cess is finding the 1-step state transition matrix 𝑇. An ele-
ment 𝑇𝑖𝑗 of this matrix specifies the probability of achiev-
ing a one-step transition from 𝑠𝑖 to 𝑠𝑗 and is given by
[59,64]

𝑇𝑖𝑗 =
𝑧𝑖𝑗∑
𝑎𝑙𝑙 𝑗

𝑧𝑖𝑗
(1)

where, 𝑧𝑖𝑗 is the number of permutations causing the
transition. Number of permutations causing the one-step
transitions in the partial STG is in Table 2, and the
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TABLE 2 Number of permutations causing the one-step transitions in the partial STG in Figure 2C obtained using ROA update method.
FPs are shown in boldface

Start state
(𝒔𝒊)

End state
(𝒔𝒋)

Number of
permutations
(𝒛𝒊𝒋)

Start state
(𝒔𝒊)

End state
(𝒔𝒋)

Number of
permutations
(𝒛𝒊𝒋)

101001 100101 42 110011 010011 720
101001 101100 72 110101 110001 360
101001 110101 66 110101 110011 240
101001 110011 348 110101 010011 120
101001 010011 192 110001 010011 360
100101 110001 360 110001 110011 360
100101 110011 270 010011 010011 720
100101 010011 90 101100 101100 720

corresponding transition probabilities estimated using
Equation (1) are presented in Figure 2C. An iterative solu-
tion of

𝑝 = 𝑇 ⋅ 𝑝 (2)

starting from the initial vector 𝑝0 ≡{
𝑝0𝑘 = 1,& 𝑠𝑘 = 𝑠𝑜
𝑝0𝑘 = 0,&𝑠𝑘 ≠ 𝑠0

gives the probability of reach-

ing different FPs starting from 𝑠0. Setting the initial vector
𝑝0 ≡ { 𝑝0𝑘 = 1∕𝑙, ∀𝑘}, where 𝑙 is the number of states
in the STG, gives the average or steady-state probability
of absorbing into different FPs of the STG. Steady-state
probabilities of reaching the two attractors 010011 and
101100 estimated using Equation (2) are 0.9 and 0.1,
respectively (Figure 2C).

2.2 Biological network construction

Often network of interest may be unavailable. As a result,
constructing a reliable, domain-specific signaling wiring
diagram of a normal healthy cell is the logical starting
point for building a BD model. Note that domain-specific
refers to specific tissue of interest and the type of thewiring
diagram considered. The first step toward constructing a
network is curation of information about the nodes and
interactions between them. A comprehensive review of
nature of different entities and interactions is in Papin
et al. [65]. Two broad approaches for biological network
curation and construction are data-driven objective and
knowledge-driven objective [66,67]. Data-driven objec-
tive employs available experimental data, for example,
in-house generated microarray/proteomics data, those in
GEO repository [68], ExpressionAtlas [69], GeNet [70,71].
On the other hand, knowledge-driven objective involves
mining information from pre-curated databases such
as STRING [72], InWeb [73], OmniPath [67], Reactome

[74], Ingenuity [75], relevant primary experimental lit-
erature, either manually or using automated software
tools. DREAM challenge data [76], genetic dependencies
repositories [77–81], and cancer-specific mutated genes
database CCLE [82] provide cancer-specific information.
Entities and interactions thus distilled can be visualized as
a wiring diagram using software such as CellDesigner [83],
Cytoscape [84], which stores it in a portable, shareable,
machine-readable format [85]. Collected information is
further structured and refined to include cancer-type-
specific annotations such as tissue, nature of activation,
associated logic. Annotations form the basis for arriving
at a logical function governing activation of a node in
BD modeling framework, detailed in section 2.1. After
construction, a series of network reduction by identifying
key structures [86] or removing certain variables such
as frozen nodes [39,43,87–89] curtails computations. Sys-
tematic step-wise network construction methodology and
compendium of resources are available in Türei et al. [67]

3 MARKERS GOVERNING
PHENOTYPE SWITCHING

Early diagnosis of tumor formation is extremely useful
in employing effective treatment regimens [90]. Cancer
being a multifactorial dynamic signaling problem involv-
ing multitude of interacting entities, aberrant nodes serves
as markers for (early) diagnosis, thereby facilitating better
disease management. For cancers exhibiting strong vari-
ability in clinical response to therapies, markers distin-
guishing disease severity and reflecting therapeutic out-
come help stratifying patients for an appropriate treatment
[90–93]. In this section, we reviewBD approaches tomodel
switching of inflammation or apoptosis to proliferation
phenotype and thereby identify diagnostic markers. Net-
works considered in this section span from only-apoptosis
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TABLE 3 Cancer diagnostic markers predicted by Boolean dynamic modeling of various networks. Construction objective adopted and
the network statistics are specified. S and GA refer respectively to synchronous and general asynchronous update methods described in
section 2.1

Cancer type
Construction
objective Compartment Nodes Links

Update
scheme Diagnostic markers

Inflammation to proliferation phenotype switching
Colon cancer [49] Knowledge-driven Intracellular and

tumor microenvi-
ronment

70 153 GA Sustained DC and p53
inactivation

Pan-cancer [97] Knowledge-driven Intracellular 40 58 S p53 inactivation
Evading apoptosis attractor

Pan-cancer [102] Knowledge-driven Intracellular 25 45 S and GA APAF1, Bax, FADD in
presence of TNFα

Neurodegenerative
Diseases [103]

Knowledge-driven Intracellular 21 37 S Overexpression of
HSP70

Pan-cancer [104] Knowledge-driven Intracellular 96 249 GA APC and SMAD4
deletion

Breast cancer [106] Knowledge-driven Intracellular 13 21 GA Malfunctioning of
PTEN and Gsk3β

Leukemia [45] Knowledge-driven Intracellular 60 142 GA SMAD, PLCG1
Pan-cancer [107] Knowledge-driven Intracellular 23 37 GA Dysfunctioning of

SMAD2 and SMAD3
Bladder carcinomas
[109]

Knowledge-driven Intracellular 53 112 GA MAPK pathway
effective in FGFR3
not in EGFR

to pan-cancer to a specific cancer-tissue. These networks
could consist of entities within a cell or additionally those
accounting for multicellular signaling events in the tumor
microenvironment. For every case considered, network
details, the Boolean modeling update scheme adopted and
key findings are presented in Table 3. Malfunctioning and
overexpression of an entity due to a certain mutation is
captured by node deletion or node over-expression (ON),
respectively.

3.1 Inflammation to proliferation
phenotype switching

Cancer cells secrete inflammatory cytokines and
chemokines and thereby induce inflammation in the
neighbouring cells [2,94]. Inflammatory cells in turn
promote cancer progression by making them to com-
mit to proliferation phenotype [95,96]. This phenotype
switching is an important step in cancer progression.
Entities involved in this switching process can thus serve
as diagnostic markers [96].
Analysis of FP, cyclic, and complex attractors of a colitis-

associated colon cancer network showed that transient
dendritic cell activation, an essential step for a successful
immune response, is needed for a release of inflammatory

cytokines and chemokines [49]. Entities considered
in the network include immune cells in tumor micro-
environment such as dendritic cells, secreted cytokines
and chemokines, and intracellular signaling nodes. This
analysis further showed that simultaneous sustained
dendritic cell activation and p53 protein inactivation
may govern the inflammatory to proliferation phenotype
switching [49]. BD attractor analysis of an (pan-cancer)
apoptosis network corroborated that inactivation of p53
results in breaking key feedback loops which serve as an
alternative for irreversible apoptotic cell fate when those
with normal caspase-3 are dysfunctional [97].
Recently, a novel approach of finding the Hierarchical

Partitioning for the Phenotype, implemented on the colitis-
associated colon cancer network [49], offers promise in
finding the global attractors corresponding to a specific
phenotype [98]. This approach involved pre-evaluating
the Boolean functions with the phenotype-specific value
corresponding to the external nodes. This results in a sim-
plified sub-network with interactions governed by fully-
or semi-updated rules that uniquely specify the attractors
corresponding to the phenotype. In order to identify the
markers that may be controlling the proliferation phe-
notype, the model was analysed by assuming sustained
activation of adenomatous polyposis coli protein repre-
senting premalignant epithelial cells and dendritic cells.
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This analysis suggested that SOCS, JAK, and STAT3 may
be controlling the proliferation global attractor. Moreover,
the analysis also revealed that during sustained dendritic
cell activation, the model does not predict apoptotic
phenotype.

3.2 Proliferation phenotype by evading
apoptosis

One of the hallmarks of cancer is evading apoptotic signal-
ing [2]. In normal cells, TNF superfamily cytokines TNFα
and FASL [99] maintain a balance between the apoptotic,
necrotic, and proliferative phenotypes [100]. Note that the
precise role of TNF superfamily cytokines in driving dif-
ferent cell-types into these different phenotypes is still
under investigation [101]. Under various pathological con-
ditions, cells secrete large quantities of TNFα leading to
an elevated leads of the cytokine in the tissue microen-
vironment. Steady-state probability of a TNFα-FASL sig-
naling network for reaching different phenotypes could
delineate the roles played by various cancer-associated pro-
and anti-apoptotic genes [102]. Even when TNFα is active,
deletion of APAF1, BAX, FADD, or Caspase 8, or over-
expression of BCL2 or NFκB is sufficient to switch the
steady-state probability significantly toward anti-apoptotic
phenotypes [48,102]. FP attractor analysis of a BDmodel of
neuronal cell network activated simultaneouslywith FASL
and neuronal growth factor showed that overexpressed
HSP70 shock protein dominates over HSP27, HSP40, and
HSP90 in promoting proliferation of cells, which would
otherwise commit to apoptosis [103]. Systematic exper-
imentation on Neuro2a cell line substantiated this pre-
diction. Further, the attractor analysis identified BCL2,
IAP, cFLIP, and NFκB as key players of pro-survival cell
fate.
An integrated PPN of signaling pathways was analyzed

systematically for assessing the nature of stability of
attractors corresponding to apoptosis, proliferation, and
quiescent phenotypes [104]. Analysis of FP and complex
attractors of the network under 32 distinct environmental
conditions predicts that 1. under normoxia conditions,
deletion or overexpression of 10 proteins such as EGFR,
NFκB, Ras can transform quiescent cells into proliferative
ones, and 2. under hypoxia conditions, the repertoire of
deleted or overexpressed proteins promoting proliferation
increases by 7 over and above those under normoxia
conditions. Further, deletion of APC, p53, Smad4, pTEN
and overexpression of RAS, Tcf, Akt in the network to
mimic colorectal carcinoma [105] led to switching of 97%
apoptosis/quiescence attractors under normal conditions
to 50% taking proliferation phenotype. BD model of an
EGFR+ breast cancer network predicted that proliferation

phenotype requires malfunctioning of PTEN or GSK3
β [106]. Moreover, structural and topological analysis
of the attractors of a T-cell large granular lymphocyte
leukaemia network led to identification of entities such
as RAS, PLCG1, IAP, SMAD as key for apoptosis to prolif-
eration phenotype switching [45] with the role of SMAD
substantiated experimentally.
MAPK pathways are known to be sentinels of can-

cer. TGFβ signaling exhibits dual role in cancer cells by
context-specifically regulating apoptosis and proliferation
phenotypes. While it acts as a tumor-supressor via p38-
MAPK pathways in normal or early cancer cells by arrest-
ing cell-cycle or triggering apoptosis, its tumor-promoting
role in the late-stages leading to cells choosing prolifera-
tion attractor is attributed to the dysfunction of SMAD2
and SMAD3 proteins [107]. Ability of signaling through
activated MAPK pathways to facilitate a balance [108]
between the proliferative and non-proliferative pheno-
types makes the FGFR3-mutated bladder carcinomas less
aggressive [109].
In summary, BD modeling approaches implemented on

different cancer-tissue-specific networks led to identifica-
tion of markers that drive inflammation to proliferation
phenotype switching and lead to acquiring proliferation
cell-fate by evading apoptosis. Tracking these markers can
help early stratification of patients and thereby facilitating
improved management of the disease.

4 CANCER PROGRESSION:
EPITHELIAL-MESENCHYMAL
PLASTICITY

Cancer progression involves tumor growth, evolution,
invasion, and spreading. In order to achieve these, can-
cer cells capitalize on the normal cell-biological program
called epithelial-mesenchymal plasticity (EMP) [110,111].
EMP facilitates adaptation of cancer cells to a new environ-
ment [112].Moreover, itmay even induce drug resistance in
them [113]. EMP consists of multiple possible phenotypic
states with complete epithelial-to-mesenchymal transition
(EMT) and completemesenchymal-to-epithelial transition
(MET) at the two ends of the spectrum [53,114–117]. A
cancer cell hijacks the EMT process to leave the primary
tumor site for invading surrounding tissues and there-
after, migrate, and enable distant metastasis [112,118]. Sig-
nificant fraction of cancer-related mortality is associated
with metastasis [119]. An outstanding question is, what
are the factors that dictate distal-organ invading abilities
of a cancer cell? Mechanistic insights into EMT can offer
clues to arresting or controlling this cell-biological pro-
gram hijacked by the cancer cell. An emerging strategy
to unravel topological features and causal mechanisms
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TABLE 4 Cancer progression markers predicted by Boolean dynamic modeling of various networks. Construction objective adopted and
the network statistics are specified. S, GA, and ROA refer respectively to synchronous, general asynchronous, and random-order
asynchronous update methods described in section 2.1

Cancer type
Construction
objective Compartment Nodes Links

Update
scheme Progression markers

Epithelial-mesenchymal plasticity
Bladder cancer [86] Knowledge-driven Intracellular 41 107 S E2F1, TGFBR1, FGFR1
Breast cancer [86] Knowledge-driven Intracellular 35 86 S E2F1, TGFBR2, EGFR
Hepatocellular
carcinoma [120]

Knowledge-driven Intracellular 70 135 GA SMAD with Wnt, SHH,
AKT, or MAPK

Hepatocellular
carcinoma [124]

Knowledge-driven Intracellular 65 136 GA SMAD with Ras,
NOTCH or
SOS/GRB2

Pan cancer [125] Knowledge-driven Intracellular and
tumor microenvi-
ronment

30 156 GA Notch overexpression
and p53 deletion

Smaller cell lung
cancer [129]

Data-driven Intracellular 33 361 ROA INSM1, SOX2, Ovol2,
FOXA2- NE; MYC,
NFκB1, SMAD3- ML

governing tumor invasion, EMT, and migration is to sys-
tematically analyze GTN constructed using large gene-
expression data from different cancer patient cohorts.
Table 4 contains the network details, the BD modeling
update scheme adopted, and key findings for the cases
reviewed in this section. BD model of bladder and breast
cancer juxtaposed with independent experimental studies
led to prediction of E2F1, TGFBR2, andEGFRbeing impor-
tant molecular signatures for regulation of tumor invasion
and thereby EMT [86].
TGFβ induces a trans-differentiation program enabling

the epithelial phenotype characterized by adhesion proper-
ties such as tight junctions to create mesenchymal deriva-
tives such as better mobility due to loss of E-cadherin and
overexpression of vimentin [54]. This induction of EMT
occurs in cooperationwith the activation of SONICHedge-
hog and Wnt-SHH pathways [120]. Activation of Wnt sig-
naling, implicated in EMT triggered by different cancer
[121,122], may even induce drug-resistance [122,123]. A sys-
tematic combinatorial node perturbations on a BD model
of EMT in Hepatocellular carcinoma complemented with
siRNA-based experimentation showed that inhibition of
SMAD along with RAS, NOTCH, or SOS/GRB2, which
hamper the key feedback loops, is effective in suppressing
TGFβ-induced EMT [124]. However, inhibition of SMAD
alone results in a hybrid EMT statewhere cells exhibit both
epithelial and mesenchymal traits.
Local invasion by and eventual late-stage migration of

cancer cells must have myriad signatures in the early
stages ofmetastasis. In the case of gut cancer, simultaneous
Notch overexpression and p53 deletion in a TGFβ-induced
EMT network drives settling of cells exhibiting invasion

or EMT or other phenotypic attractors into a metastatic
one [125]. This suggests that the synergistic effect could
have favoredmigration, as has been corroborated by exper-
iments in mouse gut [126].
Phenotypic variability expressed by small-cell lung

cancer, which is aggressive in terms of its ability to
relapse post-first line of treatment, constitutes pres-
ence of both neuroendocrine/epithelial (NE) and non-
neuroendocrine/mesenchymal (ML) behaviours [127].
Attractor analysis of the underlying transcription network,
constructed using expression data from clinical samples
[82,128], revealed specific coexistence of NE and ML
sub-populations. The coexistence of such epithelial and
mesenchymal characteristics has been validated in vitro on
several small-cell lung cancer cell lines [129]. Further, the
Boolean value taken by the identified attractors suggested
that while INSM1, POU3F2, SOX2, SOX11,FOXA2, OVOL2
genes may be responsible for the NE behavior, MYC,
NFKB1, SMAD3 genes are active in the ML phenotype.
In vitro single-cell study further revealed that after cells
were treated with first line (cytotoxic) drugs, the two
sub-populations transited into hybrid EMT phenotype
[129].
Cells are constantly exposed to internal and external

noise, sources for which are plenty [61,62]. Even though
BDmodels predict the attractors corresponding to different
cellular states, it is well-known that EMTmay involvemul-
tiple intermediates [130–133]. Given the inherent stochas-
tic environment cancer cells may experience, gaining con-
fidence on the causalmechanismgoverning these different
attractors requires stability analysis of thesemultiple states
[134]. Relative stability of an attractor is quantified by
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comparing effort required for the network to switch from
one FP to another [112]. Recently, dynamic stability analy-
sis of attractors of a generic GTN underlying EMT showed
that attractor corresponding to the epithelial phenotype is
more stable than the others [134]. The dynamic stability
was estimated based on the one-degree neighborhood of
cell states [134].
New emerging evidences suggest that blocking EMP in

both directions, that is, EMT and MET, and holding the
cancer cells in its current relative epithelial-mesenchymal
state may help reduce its ability to adapt to fluctuating
environments and thereby, decrease its metastatic poten-
tial [135]. Recently, a combined topological andBDanalysis
of the EMT network identified key positive feedback loops
that may govern E/M phenotypic multistability, the extent
of its influence, and the deletion of interactions control-
ling plasticity [136]. In order to account for heterogeneity,
dynamic variability in the Boolean value taken by an entity
was introduced by linking the decision for updating a node
at a certain timestep to the relative number of instanta-
neous activating or inhibitory inputs at that instant [137].
In summary, various BD modeling approaches have

been employed to model cancer progression via the EMT
for different cancer types. Molecular signatures governing
EMT were identified using systematic perturbation anal-
ysis. Dynamic stability analysis of the attractors revealed
key underlying topological features modulating the phe-
notypic multistability involved in the EMT. These findings
can be utilized to better control the cancer cell’s ability to
hijack the EMP.

5 THERAPEUTIC OUTLOOK: DRUG
RESPONSE AND RESISTANCE

The plethora of drugs is available for different cancers
[138], several of which are in various stages of clinical trials
[139]. Various first and second line of therapeutic agents –
for example, Gefitinib for the non-small cell lung-cancer
[140] approved for targeted therapies are typically based
on the mutation that drives tumor formation and do
offer some promise like improved remission compared
to traditional chemotherapy [24,25,26,141]. However, the
overall efficacies of these approaches are also fraught with
varying susceptibility or side-effects or intrinsic resistance
to drugs or induced drug-resistance, just as in the case of
the conventional therapies. Thus, finding cancer-specific
targeted therapies that circumvent these challenges
continues to remain an open quest. BD modeling-based
strategies for attractor switching, particularly to apopto-
sis, identified in silico are valuable in finding potential
candidates for design of better interventional strategies
that can be tested in vitro, in vivo, and in clinical settings

[44]. Details of the network and the BD modeling scheme
adopted and key findings for the cases reviewed in this
section are summarized in Table 5.
Use of Trastuzumab or Herceptin, Pertuzumab and

small-molecular inhibitor erlotinib drugs are well-known
line of treatment for HER2-positive breast cancer specifi-
cally to block Erb2/Erb1 receptor induced deregulation of
downstream signaling leading to tumor progression. BD
modeling of a cancer cell line-specific signaling network
constructed by constraining time-course proteomic data
from three HER2-positive breast cancer cell-lines exposed
to these drugs led to identification of specific new inter-
actions that may strongly influence MAPK and PI3K acti-
vation patterns [142]. Specifically, in HCC1974, which is
Trastuzumab resistant, the identified two new edges PDK1
→ ErbB-2 and p70S6K→Akt introduced feedback loops
resulting in suppression of apoptosis phenotype via PI3K
pathway and thereby causing stabilization of Trastuzumab
drug-resistance by promoting oncogenic effects. Observa-
tions in the clinical breast cancer samples substantiate
these predictions [143]. Use of inhibitors such as cele-
coxib [144] against PDK1 could help overcome such a drug-
resistance. Herceptin-based treatment targets the extracel-
lular domain IV of HER2 which in turn down-regulates
activation of MAPK pathways, viz., specifically ERK1/2,
p38, and JNK1/2, and thereby regulating signal flow toward
mitogenic and survival phenotypes [145]. However, clinical
data revealed that ∼70% of the initial responders to Her-
ceptin subsequently experienced progression to metastasis
[146] suggesting the possibility of drug-resistance [147,148].
BD modeling of the underlying network showed that
dynamic variations in the levels of several dual-specificity
phosphatases (DUSPs), which too regulate MAPK path-
ways, could provide insights into targeting certain DUSP
to overcome resistance against Herceptin drug treatment
[149]. In fact, gene expression analysis on clinical samples
from a HER2-positive cohort receiving Herceptin treat-
ment shows that higher expression of DUSP4 may be
correlated with poor patient survival [150] making it a
potential target. Therefore, inhibiting DUSP4 expression
could help overcome Herceptin drug-resistance. Proba-
bilistic Boolean modeling of a breast cancer signaling net-
work corroboratedwith siRNA gene silencing experiments
on MDA-MB-435 cell line suggested that Mcl1 is a good
drug target for influencing cancer cell growth [151].
Systematic attractor landscape analysis of 45 distinct

cancer cell-specific p53 networks perturbed with small-
molecular inhibitors predicted the phenotype switching
affected [152]. Small-molecule inhibitors used include
Nutlin-3 [153] for p53-MDM2 interaction, GSK2830371
[154] for Wip1, MK-2206 [155] for Akt, CDK2 inhibitors
[156] for Cyclin E, and Navitoclax [157,158] for BCL2 family
proteins along with or without DNA damaging drug
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TABLE 5 Novel therapeutic targets predicted by Boolean dynamic modeling of various networks based on cancer drug response and
resistance. Construction objective adopted and the network statistics are specified. While S and GA refer respectively to synchronous and
general asynchronous update methods described in section 2.1, PB refers to probabilistic Boolean modeling [166,167]

Cancer type
Construction
objective Compartment Nodes Links

Update
scheme Therapeutic targets

Combination targets to circumvent drug resistance
Gastric cancer [173] Knowledge-driven Intracellular 75 149 GA TAK1 with PI3K or

AKT
Colon cancer [49] Knowledge-driven Intracellular and

tumor microenvi-
ronment

70 153 GA C2-ceramide with
PI3K/AKT pathway

Breast cancer [151] Knowledge-driven Intracellular 31 56 PB Mcl1
Cancer drug response and resistance

Breast cancer [142] Knowledge-driven Intracellular 11 26 S Edge between PDK1
and ErbB2 or
p70S6K and Akt

Pan cancer [152] Data-driven Intracellular 16 41 S AKT, BCL2, Cyclin E,
Wip1, and
p53-MDM2 with
DNA

Colorectal cancer
[165]

Knowledge-driven Intracellular 95 341 PB Feedback edge with Src

Breast cancer [170] Knowledge-driven Intracellular 20 22 GA TNFα with JAK-STAT
and PI3K-AKT

etoposide. Networks used were constructed using
genomics data from 83 human cancer cell-lines. Specif-
ically, this study showed that single inhibition of Akt
and combinations such as inhibition of p53-MDM2 and
Wip1 with or without DNA-damaging drug may offer high
efficacy. While Akt is a promising therapeutic target for
overcoming cell-type-specific drug-resistance, given that
it has multiple functional sites and is involved in several
feedbacks [159], triple inhibition instead of single may be
necessary [160].
A therapeutic drug inhibiting a target node can cause

cells to offer adaptive resistance, wherein the inhibitor,
such as that against RAS, may induce dynamic reprogram-
ming of the signaling process to adapt to new treatment
conditions [161–163]. In such cases, it is imperative to iden-
tify the aspects of the signaling network responsible for
such dynamic reprogramming and arrest the same. For
instance, employing novel probabilistic BD modeling on
a colorectal cancer network showed that blocking a feed-
back regulation involving Src may overcome the adaptive
resistance during targeted therapy involving inhibition of
MAPK pathway [164,165]. Probabilistic BD modeling per-
mits including variability in selecting the Boolean logic
employed in the Boolean function of a node based on the
weights of the interactions input it [166,167].
Emerging evidences suggest that interaction of

cancer tissues with microenvironment consisting of
inflammation-related cells such as macrophages may

influence drug responses [168]. In vitro studies on MDA-
MB-231 cell lines suggest that the efficacy of etanercept,
a TNFα inhibitor may be compromised due to activation
of other pathways triggered by macrophages-secreted
cytokines and chemokines [169]. BD model of the TNFα
signaling network integrated with JAK-STAT and PI3K-
AKT pathways triggered by interleukins and other growth
factors suggests that cells exposed to etanercept may
continue to express survival phenotype due to NFκB
activation triggered by these extracellular stimuli [170].
Systematic in silico analysis of perturbed BD model of

colitis-associated colon cancer along with experimental
validations revealed that concurrent activation of ceramide
and inhibition of PI3K/AKT pathway could lead to an
effective anti-cancer response in tumor cells [49]. Avail-
ability of several inhibitors [171] of PI3K/AKT pathway
that are under clinical evaluation and of C2-ceramide that
increases endogenous levels of ceramide [172] makes this
combinatorial targeting attractive. Attractor analysis of a
BD model of gastric adenocarcinoma cells suggested that
besides the traditional combinatorial inhibitors such as
that for PI3K and MEK, and for MEK and AKT cur-
rently investigated in clinical trials for different cancers,
simultaneous targeting of TAK1 andPI3K, and of TAK1 and
AKT could favor apoptotic phenotype [173].
Cancer tissue-specific BD models led to identification

of the causes of poor efficacy of a treatment regime
and the mechanism such as dynamic reprogramming
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underlying acquired drug-resistance during a certain
therapy. BD analysis further led to identification of poten-
tial combinatorial treatment targeting specific nodes or
interactions that could circumvent emergence of drug-
resistance.

6 PERSPECTIVES

Ability to predict and understand causal mechanisms gov-
erning cancer incidence and progression is paramount to
preventing, managing, and combating the disease. Can-
cer is widely recognized as a result of disturbance in
the signaling problem due to aberrant cues, source for
which could be external or internal to cells [2]. BD mod-
eling approaches are used extensively to predict prognos-
tic markers, to decipher mechanisms governing cancer
progression and to identify novel therapeutic targets for
improving disease management strategies. While these
predictions offer novel insights, most of the BD models in
literature (Tables 3–5) primarily consider intracellular sig-
nal flow, which accounts for only a small fraction of the
tissue-level cancer signaling process. It is well recognized
that tumor formation and cancer progression are orches-
trated by complex dynamic communication between var-
ious inter- and intra-cellular machinery [2,174,175]. We
present in Figure 3 a block diagram capturing dynamic
communication that may be present between different
cancer-related signaling machinery. The functioning of
each of these machineries is in turn governed by inter-
acting entities such as protein, mRNA, small molecules at
multiple levels.
Unraveling etiology of tumor formation and its even-

tual dynamic responses require a cancer-specific model
that incorporates the multi-cellular signaling process elu-
cidated in Figure 3. Such amodel will juxtapose signal flow
within a cancerous cell and that in other cells in the tumor
microenvironment,with detailed communication between
them. This poses challenge at two-levels, viz., construct-
ing a reliable BDmodel of the comprehensive network and
performing massive computations of the same.
A step towards addressing the first challenge could

be constructing and analyzing cancer-specific BD model
of each of the signaling machinery (in Figure 3) under
isolated conditions. Subsequently validate the predictions
using experimentally measured threshold levels of observ-
able nodes and exhibited phenotypes. Key bottleneck
here could be lack of knowledge of 1. entities and inter-
actions participating in the considered machinery and 2.
which sub-machineries may further be involved. Should
a network under normal conditions be available, the
first bottleneck could be circumvented by identifying the
perturbations in the nodes or interactions or associated

F IGURE 3 Block diagram of different signaling machinery
(boxes) influencing cancer incidence, orchestration and progression
along with a few important entities in it. Signaling machinery in the
lower (red) and upper (cyan) sections, respectively, correspond to
the cases wherein signal transduction occurs within a tumor cell
and in its microenvironment. Communication between signaling
machinery within tumor cells and between those in its
microenvironment are captured respectively by golden and green
arrows. Blue arrows represent paracrine communication between
tumor cells and its microenvironment, and vice-versa is captured by
black ones

Boolean logic or a combination thereof that may predict
a certain observed phenotype. However, addressing the
second bottleneck is harder. For example, consider the
case of cancer progression machinery such as "Invasion
and Metastasis" (Figure 3). While involvement of several
intracellular entities such as Snail in this machinery
is well-known [112], emerging evidences suggest that
mechanotransduction – signal flow triggered by mechani-
cal cues from local microenvironment – can modulate the
signaling process [176–181]. Further, recent studies show
that pro-survival autophagy machinery induced by shear
[182,183] may govern the key short timescale processes
such as intravasation and extravasation during metastasis,
seeding of which could be by polyclonal cell clusters [184].
Detailed mechanisms that regulate mechanotransduction
are as yet unavailable and has attracted attention only in
the recent years [177,181], which calls for improving knowl-
edgebase on these aspects. Moreover, it is unclear how
mechanical cue dynamics involving diffusion of species
in physical dimensions can be incorporated in BD mod-
eling framework, which requires variables to be strictly
discrete. Combining agent-based modeling approach
which permits capturing such tumor microenvironment
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dynamics along with the BD model of intracellular sig-
naling could address this limitation of discrete dynamic
modeling approaches [185].
Well-benchmarked individual machinery models could

then be used in a plug-and-play mode to create a com-
prehensive, integrated BD model. Such a model should
incorporate intracellular signal transduction and other
processes occurring in the tumor microenvironment, and
more importantly communication between them (Fig-
ure 3). Use of ROA update method further permits
incorporation of heterogeneity in both inter- and intra-
cellular interactions [186,187]. This can enable incorporat-
ing ensemble-level features such as seeding metastasis by
tumor cell clusters [184], cell-to-cell abundance variabil-
ity. Heterogeneity is capitalized by cancer cells for various
purposes such as relapse [127,188]. Such integrated models
can be used for 1. precisely predicting the dynamic orches-
tration of attractors representing tumor formation, growth
and progression and the associated critical nodes or inter-
actions within and outside a cancer cell, 2. deciphering
dynamic reprogramming of normal long- and short-range
biological processes such as metabolism within tumor cell
[10–15], EMP [110,111] and 3. identifying, from the criti-
cal orchestrators and those regulating them, with signifi-
cant confidence, potential candidates that enable pheno-
type switching for targeted therapies.
Emerging novel therapeutic strategies range from using

microorganisms such as bacteria [189,190], nanoparticles
[191] as carriers for delivery of drugs deep inside tumors
to using genome editing technology for different cancers
[192] to reprogramming metabolic pathways [193]. Since
delivery agents or metabolic reprogramming could exhibit
deleterious influence or undesired outcomes on the host
normal or cancer cells, an integrated model can help
unravel their short- and long-range (side-) effects, presence
of inherent resistance to drugs or even drug-resistance
induced by them. These are paramount to effective drug
administration and disease management. Further, a com-
prehensive BD model trained with multiscale measure-
ments [194] such as proteomics, genomics, RNAseq at
scales ranging from single-cell to whole-body levels for
identifying attractor phenotypic patterns can reflect the
physiological state of an individual [195,196]. An omics
data-tuned patient-specificmodel can provide insights into
designing personalized therapy and novel diseasemanage-
ment strategies [35,196–199].
While a BD model consisting of large number of inter-

acting nodes along with associated Boolean logic can be
assembled, capitalizing it for useful purposes requires find-
ing the one-step state transitionmatrix (𝑇). Estimation of𝑇
is a computationally tedious task, especially when random
order asynchronous update method is employed. Reasons
for this are three-fold: 1. finding all possible FP, cyclic, and

complex attractors, 2. computing large number of states
needed for constructing reasonably sized STG, 3. comput-
ing frequency of permutations corresponding to every pair
of states in the STG. While efficient algorithms are becom-
ing available for finding primary attractors in large-scale
Boolean networks [98], development of an effective tool for
estimating 𝑇 is needed. We posit that this tool will strongly
hinge on the ability to identify the smallest size of the STG
that preserves all the necessary characteristics. We further
believe use of AI-based methods could address these chal-
lenges effectively. While most BD models of cancer net-
work consider use of FP attractors, a question arises as to
what are the practical implications of cyclic attractors, if
any found and how its features can be harnessed for useful
purposes.
BD modeling predictions are based on qualitative rela-

tionships between the entities in the network, and thus
information pertaining to subtle underlying dynamics is
sacrificed. For instance, BD models fail to predict pre-
cise bifurcation or switch-like behavior dictated by the
actual kinetics and associated parameters governing sig-
nal flow. This is a well-recognized severe limitation of
discrete dynamic models. Using multi-valued logical vari-
ables, which increases computational complexities per-
taining to evaluation of the Boolean functions, or fuzzy
logic instead of Boolean logic [33,200] could address this
limitation to some extent [31,48]. However, it can at best
capture these subtle behaviors as state-change patterns
only [201]. As discussed earlier, BD models currently can-
not account for certain continuous processes such as dif-
fusion in physical dimensions. Diffusion of various species
is an important contributor in communication between
a tumor cell and its microenvironment. Capturing these
factors is necessary from a holistic perspective. Develop-
ment of new tools that can account for these cancer-related
factors while efficiently estimating 𝑇 is needed to build a
large predictive cancer-specific BD model. A recently pro-
posed novel approach to combine BDmodeling and agent-
based framework via PhysiBoSS tool [185] accounting for
diffusion of species in tumor microenvironment is a small,
promising step in this direction.
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