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Abstract: Continuous time profiles of intracellular protein levels in a collection of isogenic cells is 
needed to achieve quantitative prediction of heterogeneity in cellular systems. However, intracellular 
staining based quantitative single-cell detection of protein levels, reported by emitted fluorescence, using 
confocal microscopy or flow cytometry can only result in discrete time series due to arresting of cell state 
to enable entry of reporters – antibody – into the cell. We propose a method to reconstruct the time-series 
of oscillatory dynamics of phosphorylated ERK (pERK), the terminal protein in the ubiquitously found 
MAPK cascades, based on the discrete time series data consisting of a distribution of fluorescence 
emitted by different ensemble of cells at different time points post-stimulation. This method employs a 
model autocorrelation function to predict the fluorescence from the experimental data that will 
correspond to a specific time point in a randomly reconstructed trajectory. We validate the method using 
the single-cell pERK oscillatory dynamics data consisting of 12100 data points measured in transfected 
cells across 121 time points by pairing reconstructed trajectories with those from original based on the 
constraint that the pair satisfied a certain cut-off for both mutual information score and Euclidean 
distance between them. Out of the 100 trajectories in the original data, our algorithm was able to 
reconstruct ~30 of them capturing a reasonable fraction of the amplitudes of the Fast fourier transform 
modes present in the original trajectory.  Using the developed method, we reconstructed 2471 trajectories 
from pERK discrete dynamics data set consisting of distribution of fluorescence data across 16 time 
points obtained from single-cell flow cytometry. The dynamics of the standard deviation of the 
reconstructed trajectories is comparable to that of the original fluorescence data. 
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1. INTRODUCTION 
Quantitative dynamical analysis of cellular systems hinges on 
the availability of continuous time-series experimental data 
(Spiller et al., 2010). Cell-to-cell variability due to various 
intrinsic and extrinsic sources causing distribution of intra-
cellular protein levels in isogenic population of cells is 
commonly observed in both prokaryotic and eukaryotic cells 
(Raser and O’shea, 2005; Raj and van Oudenaarden, 2008). 
This cell-to-cell variability is captured experimentally by 
measuring the intra-cellular protein levels across a population 
of cells using either confocal microscopy or flow cytometry 
technique (Bendall and Nolan, 2012).  
 

Measurement of intra-cellular protein levels using single-cell 
experimentation techniques requires the presence of a 
reporter in the cell that emits fluorescence when the protein 
of interest is active. Such reporters can be incorporated into 
cells either via genetic fusion by a plasmid, that is, 
transfection (Meyer and Dworkin, 2007; Miyawaki et al., 
2003), which is performed pre-stimulation during cell-culture 
or by intracellular staining (Krutzik and Nolan, 2003), which 
is incorporated post-stimulation. While the former method is 
amenable to continuous time in situ detection of levels of 
proteins of interest in an ensemble of live cells using single-
cell tracking methods integrated with confocal microscopy 
(Lippinott-Schwartz et al., 2003), latter method is not 
amenable to in situ measurements altogether and thus only 

discrete time measurements is possible from cells in which 
metabolism and signalling are arrested. This is due to the fact 
that the intracellular staining which inserts monoclonal 
antibody (conjugated with dyes that emit fluorescence upon 
activation) that is specific to the protein of interest requires 
fixation and permeabilization of cells (Krutzik and Nolan, 
2013). While fixation arrests the metabolic activity and 
freezes the state of the cells, permeabilization creates pores in 
the cell wall to help antibodies enter the cell and bind to the 
protein of interest. Thus, in situ continuous-time live-cell 
measurement at single-cell level using intra-cellular staining 
method is infeasible.  
 

Since transfection of reporters into cells is a tedious and 
difficult task, such plasmid reporter-based detection cannot 
be achieved for all proteins of interest. However, intracellular 
staining can be done for many proteins as antibodies for 
several proteins are now readily available. While single-cell 
experimentation to detect intracellular proteins is feasible, it 
can at best only offer discrete time-series information for an 
ensemble of cells and the individual cell time-continuous 
trajectories cannot be obtained. Given that continuous time-
series is needed for meaningful analyses to understand 
behaviour of a population of cells, to construct and validate 
systems biology based stochastic models, we ask the question 
is it possible to reconstruct the time-continuous single-cell 
trajectories using the discrete time-series data. This study 



 
 

     

 

proposes a method to address this question by back-
calculating the fluorescence values at different time points in 
a trajectory by assuming appropriate model autocorrelation 
information. In section 2, we briefly present the nature of 
discrete time-series experimental data on phosphorylated 
ERK (pERK) dynamics and describe the method for 
reconstruction of the trajectories. In section 3, we use a 
plasmid-reporter based data measured at single-cell level 
using confocal microscopy to validate the predictions of the 
algorithm. In section 4, we use the algorithm to reconstruct a 
discrete time-series single-cell data of pERK levels in an 
ensemble of cells measured using flow cytometry. 
 

2. RECONSTRUCTION OF SINGLE-CELL 
TRAJECTORIES 
2.1 Information reflecting protein levels in cells 
Intracellular protein levels are usually measured by detecting 
the intensity of fluorescence emitted by an active conjugated 
dye excited at a certain pre-specified, precise wavelength 
laser beam. These dyes become active only when the 
monoclonal antibody to which it is attached is bound to the 
protein whose level is to be measured. Monoclonal antibodies 
are designed to have an exclusive binding affinity towards an 
epitope, a sequence of amino acids, that is a unique signature 
of the protein of interest. (Note that monoclonal antibody 
specific to an active form of protein does not bind to the 
inactive form of the same protein.) Thus the intensity of 
fluorescence emitted by the conjugated dye from a cell 
quantifies the number of active protein molecules present in 
the cell to which the antibody is bound.  
 

2.2 Reconstruction of intracellular single-cell phosphor-
protein time-series 
We propose a 4-step algorithm for the reconstruction of 
intracellular single-cell phosphor-protein time trajectories 
based on the discrete-time fluorescence information in 
ensemble of cells. Flow chart outlining the steps involved in 
the reconstruction algorithm is in Figure 1. In this study, we 
assume that (a) fluorescence intensities across an ensemble of 
cells at certain discrete time points of interest are available, 
(b) protein level in a cell (reflected by the fluorescence 
emitted) at a certain time point is independent of that in any 
other cell in the same population, and (c) average behaviour 
is oscillatory, that is, the time series constructed by joining 
the average fluorescence at different discrete time points 
display/indicate oscillations. As the intracellular antibody 
staining requires arresting cell’s state at a certain 
measurement time, distribution obtained at different time 
points are from different ensemble of isogenic cells grown 
under identical conditions and thus discrete.  
We next briefly explain the four steps involved in the 
proposed novel reconstruction algorithm (Fig. 1) 
implemented in Matlab®. 
I: Experimental data (Fig. 1, Step I): The fluorescence data is 
assembled as an unordered set 
{E}(≥N )×T = (E1,!,ET )            [1] 
where, E1,!,ET , respectively are the fluorescence vectors at 
time t =1,!,T , where T is the total number of time points 
for which measurements are available and N representing the 
number of trajectories to be reconstructed. Note that we set N 

 
Fig. 1: Reconstruction of an ensemble of single-cell time 
trajectories from discrete-time fluorescence data 
 

as the number of raw data points in the distribution at that 
time point which contains the minimum number of 
experimentally detected cells across all datasets. We next 
estimate the mean fluorescence vector {µ}1×T = (µ1,!,µT )  
which constitute the elements of the mean fluorescence time 
series and the vector of lag-h autocorrelation 
{Am}1×(T−1) ={Amh (µ,h),∀h =1,T −1}  of the mean time series, 
which will henceforth be referred to as mean autocorrelation.  
II. Model autocorrelation data (Fig. 1, Step II): Every single-
cell trajectory must have its own lag-h autocorrelation 
leading to a distribution of autocorrelations Ah

0 ,∀h =1,T −1  
corresponding to an ensemble of such N trajectories. 
However, as the trajectories are not available, it is not 
possible to a priori estimate the distribution of 
autocorrelations from the experimental data set E , which is 
discrete in time. Therefore, we assume a certain model form 
G such as Gaussian distribution for Ah

0 . (We show in the next 
section that Gaussian distribution is a good model for the 
MAPK system whose time trajectories reconstruction is 
demonstrated in this study. For cases where prior information 
is unavailable, Gamma distribution, which captures protein 
level distribution in resting cells could be used.) In order to 
achieve this, based on the literature time-series data for 
similar systems, we assume a certain standard deviation 
vector {σ}1×(T−1) = (σ1,!,σ T−1)  for the autocorrelation 

distributions Ah
0 ,∀h =1,T −1  to be constructed. Next, we use 

the mean autocorrelation vector Am  and the literature data-
based standard deviation vector σ  to arrive at a distribution 
of autocorrelations Ah

0 ,∀h =1,T −1  lags using the probability 

density function G(Amh ,σ h )  corresponding to the Gaussian 
distribution as the base model. (Note that use of any other 



 
 

     

 

probability density function as model for G(Amh ,σ h )  does not 
alter the proposed algorithm.)  
III. Single-cell trajectories: Using the autocorrelation 
distributions and the original experimental data, we next 
construct the single-cell trajectories, one-by-one, N of them. 
We refer to one set of N trajectories as one reconstruction 
realization and construct k =1,!,500  such realizations 
altogether. We next outline the procedure for obtaining a 
reconstruction realization.  
In order to construct the jth trajectory {R j}1×T  (∀j =1,N ), we 
first randomly pick one cell each from the experimental 
fluorescence distributions for the first and second time points 
(Fig. 1, Step III(a)). Assume the corresponding fluorescence 
values are R1 j ∈ E1  and R2 j ∈ E2 , respectively. Next, to 
predict the fluorescence value in the jth trajectory for the next 
time point, say t=3, we randomly pick an autocorrelation 
value A2, j

0  from the model autocorrelation distribution 

corresponding to lag-2, that is, from A2
0  (Fig. 1, Step III(c)). 

Using a re-arranged expression for the autocorrelation A2, j
0  

of the form 

  

A2 j
0 =

R1 j − 2R2 j + R3 j( ) 3( ) R3 j − 2R2 j + R3 j( ) 3( )
1
3
2σ 2 j

2 + R3 j − 2R2 j + R3 j( ) 3( )
2⎛

⎝
⎜

⎞

⎠
⎟

            [2] 

where, R2 j =
1
2

Rkj
k=1

2

∑  and σ 2 j
2 =

1
2

Rlj − R2 j( )
2

l=1

2

∑  which, upon 

expanding takes the form of a quadratic equation in R3 j
e . 

(Detailed derivation of Eq. (2) is presented in Appendix I.) 
We estimate R3 j

e by solving this underlying quadratic 
equation. After rejecting the unfeasible solution – negative – 
for the estimate, we identify the cell having a fluorescence of 
say R3 j ∈ E3 in the original data that is closest or equal to the 

estimate R3 j
e . We choose this fluorescence value R3 j ∈ E3  to 

be that corresponding to the t=3 time point in jth trajectory. 
We then update, upto the current time point (t=3), the 
reconstructed time-series vector{R j}1×3 = (R1 j ,R2 j ,R3 j ) . Next, 
in Step III(d) (Fig.1), we repeat the estimation of the 
fluorescences Rtj , ∀t = 4,T  by following the same procedure 

of randomly picking autocorrelation value Ah, j
0  with h = t −1  

from the model autocorrelation distribution data Ah, j
0  

corresponding to lag-h and by solving the underlying 
quadratic equation for the autocorrelation Ah, j

0  of the form 

Ahj
0 =

R1 j − hRhj + Rtj( ) t( ) Rtj − hRhj + Rtj( ) t( )
1
t
hσ hj

2 + Rtj − hRhj + Rtj( ) t( )
2⎛

⎝
⎜

⎞

⎠
⎟

         [3] 

where, Rhj =
1
h

Rlj
l=1

h

∑  and σ hj
2 =
1
h

Rlj − Rhj( )
2

l=1

h

∑ .       (Detailed 

derivation is in Appendix I.) Note that while solving the 
quadratic equation for the tth timepoint ∀t = 4,T , to estimate 
Rtj
e , we assume all elements of  {R j}1×(t−1) = (R1 j ,!,R(t−1) j )  

are already estimated. We then update {R j}1×T = (R1 j ,!,RTj )  
and thereby obtain the trajectory.  
Steps III(b) and (c) are then repeated to obtain trajectories 
∀j =1,N constituting trajectory data set for 1 realization. 
Steps III (a-d) are then repeated k=500 times to obtain as 
many reconstruction realizations. 
IV. Reconstructed data sets: The data sets corresponding to 
all the realizations are then placed in an appropriate database 
for further use of the reconstructed trajectories. 
 

3. RECONSTRUCTION OF CONTINOUS TIME SAMPLE: 
VALIDATION 
In this section, we validate the proposed method by 
implementing the algorithm on a test continuous time-series 
dataset from literature where the fluorescence-tagging is 
achieved by inserting an appropriate plasmid into the cells. 
This validation is carried out by first assuming that the 
distribution of fluorescence measured is not continuous time, 
that is, assume that the fluorescence distribution across 
different time points are from different cell population. We 
then reconstruct the trajectories, pair those reconstructed with 
the original using appropriate metrics and quantify the extent 
of prediction.  
 
3.1 Sample fluorescence data 
Using a lentiviral transfected PC12 cells, Ryu et al. (Ryu et 
al., 2015) quantitatively measured the levels of pERK 
continuously in live-cells stimulated with various 
concentrations of growth factors NGF/EGF. (Note that the 
transfection via a plasmid enabled genetic fusion of a 
biosensor capable of fluorescing upon activation of a certain 
interested protein.) We used the dataset consisting of 12100 
data points (121 (=60 minutes x 2 measurement per minute + 
0 minute) x 100 cells) corresponding to sustained stimulation 
of transfected PC12 cells with 25 ng/ml of EGF, source data 
for which is available as supplementary information. This 
continuous time trajectories measurement was obtained by 
immobilising the cells through an appropriate highly 
sophisticated, micro-fluidic device and by detecting the 
fluorescence emitted by individual cells using confocal 
microscopy. 
 
3.2 Reconstruction of the trajectories of pERK levels in 
transfected PC12 cells stimulated with EGF 
Assuming the fluorescence distribution at 121 time points to 
be discrete, we estimated the model autocorrelation data Ah

0  
with ∀h =1,120  from the original data. The distribution of 
the autocorrelation displayed a gaussian distribution 
behaviour at all time points. The mean and the standard 
deviation of the autocorrelation distributions across 121 time 
points along with sample histograms (at two different time 
lags) fit with a Gaussian probability density function is 
presented in Fig. 2. 



 
 

     

 

 
Fig. 2: Mean and standard deviation of the autocorrelation 
distributions estimated with different time lags. Inset: 
Autocorrelation distribution with time lag of 3 mins and 24.5 
mins fit with Gaussian model (red line). 
 
After constructing the autocorrelation distributions, we 
employed the algorithm to reconstruct the time trajectories: 
500 realizations each consisting 100 reconstructed 
trajectories. Demonstration of the ability of the algorithm to 
reliably reconstruct, at least a fraction of the maximum 
possible trajectories hinges strongly on the pairing of the 
reconstructed ones with the original trajectories. 
Identification of the right pair is a complex problem. 
However, in the next sub-section, we present a possible 
quantitative approach to address the pairing problem. 
 
3.3 Pairing of reconstructed and original time trajectories 
Rational pairing of the two time profiles requires quantitative 
pattern matching techniques. A good match will typically 
have same number of occurrences of fluorescence values in 
both time-series and will also have them ordered in the same 
sequence. In order to account for these two primary features 
while pairing, we employ as metrics  
(a) mutual information score  
M jn (x, y) = p(x, y)log2 p(x, y) ( p1(x)p2 (y))⎡⎣ ⎤⎦

y
∑

x
∑

         [4] 
and  
(b) the Euclidean distance Pjn   

between the jth reconstructed trajectory and nth original 
trajectory. In Eq. (4), p(x, y), p1(x), and p2 (y) , respectively 
are the joint probability of finding values x  and y  in the 

vector of fluorescences in reconstructed (R j ) and original 

(En ) trajectories, probability of finding value x  in R j , and 

that of finding value y  in En . We estimated the mutual 
information score and the Euclidean distance (pdist function 
in Matlab®) between all reconstructed and all original 
trajectories for all 500 realizations. Note that while larger Mjn 
indicate that the fraction of time points containing same 
fluorescence values is similar in both jth ∈ R  and nth ∈ E  
trajectories, smaller Pjn indicate good similarity between the 
jth ∈ R  and nth ∈ E trajectories. In order to account for both 

these factors, an appropriate cut-off on the Mjn and Pjn is 

needed. As there is no independent way to set a cut-off for 
these and the reconstructed data is not expected to capture 
100% information present in the original data, we selected 
pairs by considering different cut-offs for Mjn in [0.1,1] and 
for Pjn in [0.25,2.5] . In particular, for every realization and 
for every Mjn and Pjn cut-off, we choose as unique pairs, out 
of 100×100  possible pairs, those that exhibit (a) Mjn above 
its cut-off and (b) Pjn below its cut-off. In Fig. 3, we present a 
heatmap of the average number of unique pairs that can be 
selected for a pre-specified combination of cut-offs for Mjn 
and Pjn. (Note that the average here is across the 500 
realizations.) Standard deviation corresponding to each of the 
combinations is indicated on the heatmap.  

 
Fig. 3: Heatmap of the average number of unique pairs of 
reconstructed and original trajectories satisfying the cut-offs 
on Mjn and Pjn between them. The average is across 500 
realizations and for each realization every selected unique 
pair satisfied both the cut-offs. The numbers presented in 
every box represents the standard deviation. 
 
3.4 Comparison of the two trajectories of the unique pairs 
Extent of representation of information in a reconstructed 
trajectory can be assessed by comparing features of the 
reconstructed and original trajectories paired. We consider 
the case that satisfies the conditions  
M jn > 0.5,Pjn <1.5            [5] 
for which the average unique pairs is 28.1 (±2.12) . In Fig. 4, 
for a particular realization, we present a comparison of the 
trajectories from the reconstructed set and that it is likely to 
correspond to in the original dataset based on the conditions 
in Eq. (5). In Fig. 5, we show comparison of top three (out of 
28) based on the cut-offs chosen (Eq. 5). 
 Figures (4) and (5) together suggest that the 
reconstruction algorithm is able to capture, within the scope 
of the pairing method chosen, reasonable number of original 
trajectories. The algorithm is unable to capture all the crests 
and troughs of the trajectories accurately.  
       Visual inspection of the profiles is insufficient to exactly 
assess what features of the original trajectory the algorithm is 
able to accurately capture in the reconstruction. In order to 
understand the extent of capture of the features of the original 
profile, we perform fast fourier transform (FFT) on the paired 
reconstructed and original trajectories and compare the 
amplitudes of the leading modes. We conducted this analyses 
on a selected few realizations and present for one of them. 



 
 

     

 

 
Fig. 4: Trajectories in the (a) original data and (b) 
reconstructed data that correspond to the 26 unique pairs. 
 

 
Fig. 5: Comparison of the time profiles of the top three 
reconstructed (red) and the original (blue) trajectory pairs for 
the realization corresponding to that in Fig. 4. 
 
 Figure 6a shows the amplitudes of the FFT modes of the 
original and reconstructed trajectory pair in Fig. 5(I). 
Moreover, in Fig. 6b, we present, for the first 10 FFT modes, 
box plots showing the quartiles of distribution of the 
fractional deviation of the amplitude of reconstructed 
trajectory from that of the corresponding mode of the original 
trajectory. Figure 6b suggests that the there are pairs where 
the amplitudes of the first 10 modes (which is expected to 
capture the dominant dynamics) match very well. However, 
unfortunately the selection methodology also has led to pairs 
where the amplitude of the dominant modes in reconstructed 
trajectory deviate appreciably from that in the original, as 
reflected by the high standard deviation in the FFT 
amplitudes (Fig. 6b). Moreover, a comparison of the paired 
trajectories (Fig. 5a) suggest that the reconstruction does not 
capture the larger frequencies (higher modes) very well, as is 
also evident from the deviation in the amplitudes of the 
higher modes for the matched pair (Fig. 6a).  
 
4. RECONSTRUCTION USING FLOW CYTOMETRY 
DATA 
Measurement of intracellular protein levels using flow 
cytometry requires cell fixation that arrests the cell’s 
metabolic and signaling state and thus rendering it (cell) 
unusable any further. Thus, the only dynamical information 
that is available is discrete distribution of the fluorescence 
emitted by different (isogenic) cells at different  time   points. 

 
Fig. 6: (a) FFT of original and reconstructed trajectories in 
Fig. 5(I). (b) Heatmap of and boxplot – overlayed – showing 
different quartiles of the distribution of the fractional 
difference in the amplitudes of the first 10 FFT modes. 
 
As demonstrated in the previous section, the algorithm 
provides a reasonable reconstruction of such discrete data. In 
this section, we present reconstruction of an ensemble of 
single-cell trajectories using discrete flow cytometry 
fluorescence data. 
 
4.1 pERK experimental data from flow cytometry 
Jurkat-E6.1 cells were constantly stimulated with 10ng/ml of 
PMA, which is a pan-TLR agonist (Kalantre et al., 2016). 
pERK levels were estimated by detecting the fluorescence 
emitted by cells stained with pERK monoclonal antibody 
conjugated with Alexa Fluor 488 dye (BD Biosciences). 
Single-cell pERK levels were captured at 16 discrete time 
points between 0,  90 mins with a uniform interval of 6 mins. 
The number of cells captured and the mean of the distribution 
at these time points are in Table 1. (Note that since different 
time point data is from different population of isogenic cells, 
the number of dead cells/debris varies and thus capturing 
fluorescence from same number of cells is impractical.) 

Table 1: Number of cells captured at and mean pERK level 
at discrete experimental time points 

t 
(mins) 

No. of 
cells 

Amh  t 
(mins) 

No. of 
cells 

Amh  

0 26759 448 48 24460 509 
6 6828 493 54 8285 508 

12 5743 493 60 3958 509 
18 25289 502 66 8236 491 
24 16686 500 72 6766 516 
30 5408 508 78 7660 506 
36 12811 522 84 8001 502 
42 2471 515 90 14141 511 

 
4.2 Reconstruction of the single-cell trajectories 
We used the algorithm (Fig. 1) and the discrete raw 
fluorescence data and reconstructed 2471 single-cell time-
series trajectories. As the distribution at different time points 
measured in sample continuous time data exhibited Gaussian 
distribution for the autocorrelation (Fig. 2) for all time points, 
we employed the same distribution along with the 
corresponding time-averaged standard deviation of 0.125 as 
the model input parameter (σ h ) . Reconstruction was also 

performed for various σ h ∈ [0.015,0.28]  (Fig. 2). Fig. (7a) 
shows the reconstruction along with the mean and standard 
deviation at every time point. Comparison of time-series of 



 
 

     

 

standard deviation of original data and those of reconstructed 
trajectories for various (σ h )  (Fig. 7b) suggests that 
reconstruction is insensitive to model input parameter. 

 
Fig. 7: (a) Time-series of 2471 reconstructed trajectories from 
flow cytometry data for σ h = 0.125 . (b) Comparison of the 
time series of the standard deviation of reconstructed with 
various σ h and original data. 
 
5. CONCLUSIONS 
 Knowledge of continuous time-series is of immense 
value for quantitative prediction of intracellular dynamics. 
Such continuous time-series information is unavailable when 
measuring single-cell intra-cellular protein levels using 
antibody as reporter. Only time-discrete distribution of time-
series information is available. Our study is the first attempt 
to reconstruct an ensemble of trajectories based on such 
discrete data set when the mean data across the measurement 
time points display oscillatory behaviour. Model 
autocorrelation function was used to predict the fluorescence 
values at every time point. 
 
 We validated the reconstruction algorithm using the 
continuous time-series pERK dynamics in transfected cell 
lines in which plasmid was used to genetically fuse the 
reporters. The algorithm was able to predict ~30 
reconstructed trajectories that matched with as many distinct 
original ones based on the cut-offs on the mutual information 
score and Euclidean distance as the pairing constraints.  
 
 We used the algorithm to predict 2471 trajectories of the 
pERK dynamics from the intra-cellular measurement of the 
fluorescence at 16 time points using flow cytometry. 
Comparison of the dynamics of the standard deviation of the 
reconstructed trajectories and those of the original data 
suggest that the reconstruction is reasonable and is insensitive 
to model input parameter σ h .  
 
 Trajectory predictions made in this work is based on the 
approximate autocorrelation function for estimating the value 
of the fluorescence at the time point of interest. Several 
improvements can be made, for example, use of the complete 
autocorrelation function or introduction of iterative correction 
scheme or a different model autocorrelation function itself. If 
prior data indicating good model is unavailable, Gamma 
distribution capturing the underlying cell-to-cell variability of 
inactive protein levels could be used as a first approximation 
(Cai et al., 2006) for the autocorrelation distribution.  
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Appendix A: AUTOCORRELATION FUNCTION  
Suppose that R = (R1,!,Rt−1)  data points in a time-series are 

already estimated and it is desired to estimate Rt , the data 
point at t. Autocorrelation function of a time-series for a time 
lag of h=t-1 of with data points R = (R1,!,Rt )  is given by 

Ah
0 = (R1 − Rt )(Rt − Rt ) σ t

2    [A1] 
where, mean  

Rt =
1
t

Rl
l=1

t

∑ =
1
t
Rt + Rl

l=1

t−1

∑
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=
1
t
Rt + hRh⎡⎣ ⎤⎦   [A2] 

and variance approximated as 

σ t
2 =
1
t

Rl − Rt( )
2

l=1

t

∑ ≈
1
t
Rt −

1
t
Rt + hRh⎡⎣ ⎤⎦

⎛

⎝
⎜

⎞

⎠
⎟
2

+ hσ h
2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 [A3] 
Note that here we express the variance σ t

2 at the current time 
point t as an approximate function of the penultimate 
variance σ h

2  at h=t-1. Using Eqs (A2) and (A3) into Eq. 
(A1), Eq. (A1) can be re-written into that in Eq. (3) in the 
main text. Eq. (2) can be obtained by setting t=3 in Eq. (3). 
 
 
 


