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ABSTRACT: Transversal hot zones have been reported to form in packed-bed reactors used to conduct exothermic reactions.
Packed-bed reactors are usually operated under non-adiabatic conditions. Previous attempts to predict the formation of
transversal hot zones have been made on both shallow and long reactors under adiabatic conditions; that is, wall heat transport is
zero. We show that a rich variety of slowly oscillating transversal hot zones, such as rotating patterns, targets, and spirals, may
form in shallow, non-adiabatic reactors. Under certain conditions, azimuthally symmetric target patterns coexist with azimuthally
non-symmetric rotating patterns. Surprisingly, a small wall heat transport can force a traveling wave or band motion observed
under adiabatic conditions into a rotating pattern. A transition from the rotating patterns and/or target patterns to spiral waves
depends on the residence time, the reactor length scale, and the wall heat transfer coefficient. A shallow reactor model predicts
that the spatiotemporal patterns oscillate at a very low frequency (order of 10−5 Hz), which is in agreement with predictions
based on laboratory experiments.

■ INTRODUCTION

A symmetric temperature (and conversion) profile is expected
in the cross-section of non-adiabatic, catalytic packed-bed
reactors. However, several industrial- and laboratory-scale
reactor studies have reported the formation of transversal hot
zones, i.e., temperature fronts. Boreskov et al.1 and Matros2

observed several high-temperature zones at the exit of a down-
flow packed-bed reactor during partial oxidation of isobutyl
alcohol. Clinker formationthat is, formation of small lumps
of molten catalysthas been reported during hydro-
desulfurization of trickle-bed reactors.3 Periodic oscillations of
transversal hot zones during catalytic oxidation of CO or
ethylene have been reported by Wicke and Onken.4,5

Spatiotemporal pattern formation has been detected using
infrared imaging along the exterior surface of a radial flow
reactor6,7 and thin annular catalytic shell,8 on top of shallow
packed-bed reactors,9−11 on a catalytic glass fiber cloth
reactor,12 and in packed-bed reactors.13 Various experimental
and theoretical studies on pattern formation in different
packed-bed reactor configurations, using different kinetic rate
expressions, have been extensively reviewed by Viswanathan et
al.14

Hot zone formation may strongly affect the yield of desired
product(s), deactivate the catalyst, and/or trigger unwanted
side reactions. The presence of hot spots, especially near the
reactor wall, can pose severe safety concerns, as the high-
temperature zone can weaken the metal strength, leading to
formation of cracks through which the reactants and products
may leak out and trigger explosions. Several explosions in
trickle-bed reactors are thought to have been triggered by hot
zones present near the reactor wall. Due to the lack of an
appropriate non-invasive, in situ technique, detection of small
transversal hot regions in large commercial reactors is very
difficult. Therefore, understanding the formation and evolution
of hot zones in packed-bed reactors can provide useful insights

for identification of potential strategies for circumventing their
formation, especially near reactor walls. Potential causes for
local hot spot formation in catalytic packed-bed reactors that
have been considered in the literature include non-uniform
catalyst activity/packing,2,15 flow maldistribution,16,17 hydro-
dynamic instabilities,18,19 or global coupling due to interaction
of (a) unreacted reactants in the effluent stream with the top of
the packed-bed reactor20 and (b) reactants with the surface of
the annular cylinder.8,21 Pattern formation due to spatial non-
uniform catalytic activity may be caused by point contact
between discrete catalyst particles in the solid phase.15

Symmetry-breaking bifurcation leading to formation of
spatial and/or spatiotemporal patterns is a ubiquitous
phenomenon. Several attempts have been made to predict
and understand pattern formation in adiabatic packed-bed
reactors caused by symmetry-breaking. Schmitz and Tsotsis22

found that stationary hot zones may form when the rate of
species exchange exceeds that of the heat exchange. Balakotaiah
et al.23 showed that, in an adiabatic reactor used to conduct a
bimolecular reaction, transversal patterns may form when the
heat dispersion is lower than that of the species. However, as
pointed out by Yakhnin and Menzinger,24 under practical
conditions, heat dispersion is higher than that of the species in
packed-bed reactors.25,26 Neither a pseudo-homogeneous
model27 nor a two-phase model28 accounting for only
temperature and concentration variables can predict the
formation of stable, symmetry-breaking, stationary transversal
patterns when the heat dispersion is higher than that of the
species. A detailed rate expression that considers, in addition to
temperature and reactant concentration, dynamics of the
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adsorbed concentration of non-limiting reactant or catalytic
activity may permit formation of a rich variety of
spatiotemporal patterns, such as rotating patterns and complex
periodic motion in two and three dimensions (2-D and 3-D).
This has been demonstrated for shallow29,30 and (more
realistic) long adiabatic reactors.31,32 Such rate expressions
that depend on the adsorbed concentration of non-limiting
reactant or local catalytic activity and permit oscillations have
been validated for several exothermic reactions, such as CO
oxidation,33 ethylene hydrogenation,33 and oxidation of hydro-
gen.34

Significant attempts have been made to predict spatial and
spatiotemporal pattern formation in adiabatic packed-bed
reactors. However, achieving perfect adiabatic conditions is
extremely difficult. In fact, most industrial reactors used for
conducting exothermic reactions are cooled35 for better heat
management. Laboratory-scale reactors typically use alumina
wool to minimize heat loss from the walls.9 Thus, it is necessary
to obtain insights on the pattern formation in non-adiabatic
reactors as well. In this study, we consider the formation of
spatiotemporal patterns in non-adiabatic, catalytic packed-bed
reactors. Nekhamkina and Sheintuch36 showed that, for a
homogeneous model with first-order exothermic kinetics, under
non-adiabatic conditions, at best only axisymmetric patterns
such as targets can be obtained. Using a periodic blocking−
reactivation kinetic model, we predict formation of a rich
variety of spatiotemporal patterns, such as rotating patterns and
spirals, in shallow, non-adiabatic packed-bed reactors.

■ CALCULATIONS AND MODELING
Shallow, Non-adiabatic Packed-Bed Reactor Model.

We consider transversal hot zone formation during the ethylene
hydrogenation reaction,

+ →C H H C H2 4 2 2 6 (1)

conducted in a catalytic packed-bed reactor filled with Pd-
impregnated catalysts and operated under non-adiabatic
conditions. We model this system by monitoring the blocking
of catalyst sites, local reactor temperature, and concentration.
First, assuming a periodic blocking−reactivation of Pd catalyst
sites,30,33,37 the dynamics of the fractional active-site blocking is
captured by
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where θ (= (T − Tin)/Tin) and Θ respectively are the local
dimensionless temperature and fraction of blocked catalytically
active sites,
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with kBL(Tin) = kBL
0 e−γBL and kRE(Tin) = kRE

0 e−γRE. Next, we
capture the dynamics of the conversion x (= 1 − C/Cin) and

temperature θ in the non-adiabatic reactor using a pseudo-
homogeneous model. Dimensionless model equations for these
quantities are
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subject to the boundary conditions
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where the dimensionless quantities are
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with subscript ⊥ referring to the transversal direction
(perpendicular to the flow). In eqs 5 and 6, ∇⊥

2 is the
Laplacian operator in polar coordinates:
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Assuming ethylene is present in excess, the dimensionless
reaction rate that is first-order with respect to hydrogen is given
by
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Identification of the spatiotemporal patterns permitted by the
model requires the use of appropriate 3-D initial conditions,
which is very difficult and tedious to arrive at.27,29 Therefore, to
gain useful insights into the formation and dynamics of hot
zones, we first study the shallow reactor model under non-
adiabatic conditions, which is a limiting form of the full model14

and can be obtained using the Liapunov−Schmidt reduction of
the full model (eqs 2−9).38,39 [Details of the method have been
described by Viswanathan.40] This approach has been
demonstrated successfully for models of reactor operated
under adiabatic conditions.27−29,41 We extend this to non-
adiabatic reactor model. The pseudo-homogeneous model of
the shallow, non-adiabatic packed-bed reactor (SNAR) is
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where the axially averaged dimensionless conversion and
temperature are

∫ ∫η θ θ η= =x x d d
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with the corresponding boundary conditions being
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The dynamics of Θ is captured by eq 2. Using L = dp,
27 where

dp is the particle diameter, we redefine transversal mass and
heat Peclet numbers respectively as Pe⊥

m = Pep
m(R/dp)

2, with Pep
m

= vdp/D⊥, and Pe⊥
h = Pep

h(R/dp)
2, with Pep

h = vdp/(λ⊥̅/(ρCp)f).
Biot number is rewritten as Bi = Bip(R/dp), with Bip = hdp/λ⊥̅.
Using second-order finite difference scheme, the SNAR

model (eqs 2, 10, 11 and 13) was discretized in polar
coordinates. The reactor was divided into N circles placed at ξi
= ((2i − 1)/(2N − 1))∀i = 1, N.31,42 Each circle consisted of
equally spaced grids in azimuthal direction. This discretization
scheme circumvents numerical difficulties associated with the
singularity at the center (ξ = 0). Dynamic simulations were
performed using Linear IMplicit Extrapolator (LIMEX).43,44

While simulations of the azimuthally uniform state were
conducted using direct linear solver (LAPACK) option in
LIMEX, the 2-D simulations were performed using the
underlying sparse iterative solver (BiGSTAB), which usually
converged in 3−4 iterations. All steady-state simulations were
conducted using Newton−Raphson iteration implemented in
Nonlinear Object-Oriented Solutions (NOX) package in
Trilinos.45 Bifurcation diagrams and maps were constructed
using pseudo-arc length continuation technique available in
Library of Continuation Algorithms (LOCA)46 in Trilinos.45

Methodology for Predicting Spatiotemporal Patterns.
A non-adiabatic shallow reactor can permit spatiotemporal
transversal patterns whose dynamics may depend solely on the
radial position or on both radial and azimuthal coordinates. The
procedure that has been followed for the case of adiabatic
reactor is not directly amenable for non-adiabatic conditions.
This is due to the fact that, under non-adiabatic conditions, the
flux boundary condition forces a symmetric base steady state,
uss = uss(ξ) = [xss(ξ) θss(ξ) Θss(ξ)]

t, in the transversal direction,
that is, a function of radial position. The base state uss is the
solution of the 1-D steady-state SNAR model obtained by
ignoring the time and azimuthal dependence in eqs 2, 10, 11
and 13. [Note that under adiabatic conditions, the base steady
state is transversally uniform.] As the nature of the base steady
state is different under non-adiabatic conditions, the overall
procedure prescribed for adiabatic conditions elsewhere29

needs to be modified based on the extent to which pattern of
interest depends on the physical dimensions. We briefly sketch

the overall procedure followed for obtaining patterned states
under non-adiabatic conditions.
The stationary steady state uss is stable to homogeneous

perturbations ω(ξ) = [ω1(ξ) ω2(ξ) ω3(ξ)]
t when all

eigenvalues of the underlying eigenvalue problem,
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subject to the boundary conditions ∂ω1/∂ξ|ξ=1 = 0 and (∂ω2/∂ξ
+ Biω2)ξ=1 = 0, have negative real part. The eigenvalue problem
(eq 14) is obtained by introducing the perturbations u − uss =
ω exp(λτ), where the state variables u = [x(ξ) θ(ξ) Θ(ξ)]t, into
the 1-D SNAR model and linearizing around the base steady
state uss. In eq 14,  is the vector of 1-D steady-state model
equations, u|uss is the first Frećhet derivative of  evaluated at
uss, and x, θ, and Θ respectively are the partial derivatives of
the dimensionless reaction rate (u) with respect to the state
variables x, θ, and Θ. While 1θ, 1Θ, and 2θ, and 2Θ
respectively are the partial derivatives of the dimensionless
blocking and reactivation rates with respect to θ and Θ, ∇⊥,r

2 is
the Laplacian in radial coordinates. [In eq 14, · refers to dot
product.] Note that due to the a priori unknown dependence of
the derivatives x, θ, and Θ (evaluated at uss) on ξ, and
therefore that of 1θ, 1Θ, 2θ, and 2Θ also implicitly on ξ, the
eigenvalue problem in eq 14 along with the boundary
conditions, though linear, cannot be solved analytically. While
a limit point bifurcation occurs when a real eigenvalue of u|uss
is zero, a Hopf bifurcation occurs when a pair of complex
eigenvalues of u|uss crosses the imaginary axis with non-zero
speed. The periodic blocking-reactivation kinetic model
considered here permits stable, purely radial oscillatory
behavior (presented later).
Parameter ranges where 2-D transversal spatiotemporal

patterns may appear were identified by finding the boundaries
in parameter space where the stable azimuthally homogeneous
states may become unstable. A stable azimuthally homogeneous
state uss may become unstable when subject to azimuthally
inhomogeneous perturbations of the form

ω ωξ ϕ ξ= ϕe( , ) ( )m
im

(15)

where m = 1, 2, 3, ... is the azimuthal mode number and eimϕ is
the mth eigenfunction. This transition occurs at the Hopf
neutral stability point which satisfies
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and ωr and ωi respectively are the real and imaginary parts of
the complex eigenvector ω(ξ), corresponding to the complex
eigenpair λ = ±iσ, with σ being the frequency (up to first-order
terms) of the emerging oscillations. Details of the construction
of the Hopf neutral stability locus are in Appendix I-1.
In order to find a specific sustained spatiotemporal pattern,

we provide an inhomogeneous initial guess to the 2-D model
equations (eqs 2, 10, 11, and 13),

ωξ ϕ ξ ξ= + ϕu u A e( , ) ( ) ( ) im
ss c (18)

with the specific value of m and Ac ≈ 0.5, and solve for the
trajectories of the state variables for sufficient number of stable
cycles using the procedure outlined in the previous section.
Note that the purely radial or azimuthally uniform

spatiotemporal patterns are a subset of the various possible
spatiotemporal patterns. It has been noted by Golubitsky et
al.47 that the purely radial spatiotemporal patterns are obtained
when m = 0. For the model considered here, these states are the
azimuthally homogeneous 1-D oscillations or symmetric targets
obtained by using base states itself as initial conditions.
In the following sections, we use the procedure outlined here

to predict various spatiotemporal patterns. Parameter values
used in all simulations, unless otherwise mentioned, are

γ γ γ

β θ

= = = = −

= − = =

= = =

Da e

Da e Pe Pe

Le

15, 7.7, 0.77, 3 5,

1 5, 5, 1,

1416, 0.95, 0.9w

BL RE BL

RE p
m

p
h

(19)

Spatiotemporal Pattern Formation. Evolution of differ-
ent types of spatiotemporal patterns is a strong function of the
base-state solution from which the patterned state emerges and
the initial conditions that are provided to the dynamic
simulations. The base-state solution, under certain conditions,
exhibits multiple steady states and oscillatory behavior. The
bifurcation map in the planes of Da and Bip (Figure 1a) shows,
for R/dp = 100, via the codimension-1 (henceforth codim-1)
limit point (gray lines in Figure 1a) and (supercritical) Hopf
bifurcation (black lines in Figure 1a) loci, the parameter region
where the multiple steady states and the oscillatory dynamical
behavior exist. [Details of the construction of the codim-1 limit
point locus are in Appendix I-2.] For the chosen set of
parameters (eq 19), the oscillatory states (Figure 1a, black
lines) and the limit points (Figure 1a, inset) were found even
when Bip = 0, that is, adiabatic conditions, as reported in
previous studies.30 For a fixed wall temperature, θw, as the rate
of heat transport from the reactor wall depends both on wall
heat transfer coefficient (Bip) and on the reactor radius (R/dp),
modulation of the Hopf bifurcation by the reactor radius is
important and is captured via the codim-1 Hopf locus (dotted
lines) in Figure 1b. Note that (a) the oscillatory states, if any,
are bounded between two supercritical Hopf bifurcation points,
and (b) for a sufficiently large Bip (Figure 1a) and sufficiently
large reactor radius (Figure 1a,b), the Hopf bifurcation is not
modulated by either wall heat transfer coefficient or the reactor
radius. We next present, in Figure 1b, along with the Hopf
codim-1 locus, the oscillatory neutral stability curves for the
first three azimuthal modes (m = 1, 2, 3). Oscillatory neutral
stability curve for a particular m is the locus of those marginal
stability points from where the transversal patterns may emerge
from the bases states. [Note that while a very large number of
transversal patterns may be generated using initial conditions
with different values of m, we restrict to the first three modes

only in this study.] The contours of the eigenfunction of the
underlying perturbations (ω(ξ)eimϕ in eq 18) for Da = 0.195
are depicted in Figure 1c. Contours for others values of Da are
similar. Extensive numerical simulations were performed for
various parameter values using inhomogeneous initial con-
ditions as shown in eq 18 for various m. Numerical simulations
showed the existence of a rich variety of patterns and the
transitions between them.
We first show the case of a reactor with relatively small R/dp

= 10. In Figure 2, we present the global bifurcation diagram in
the planes of Da (representing residence time) and the exit
temperature ⟨θ⟩, which is obtained by taking a cross-sectional
average of the temperature. Two supercritical Hopf bifurcations
(H1 and H2 in Figure 2) emerge from the stable base steady
states (solid black) with the imaginary coefficient of the
eigenvalue, that is, frequency σ being 0.000177 and 0.000213,
respectively. Thus, the period of oscillations next to the two
Hopf points H1 and H2 of 2π/σ is 35498 and 29499,
respectively. While both target and rotating patterns emerge
from H1, only target patterns emerge from H2. The dependence
of the rotating (solid gray) and target (dotted) patterns on the
Da are captured by monitoring the maximal ⟨θ⟩ during one
cycle of the oscillation. [Note that the rotating patterns were

Figure 1. (a) Codimension-1 bifurcation map showing the Hopf-
bifurcation and limit point loci for R/dp = 100. Inset: Zoom-in on a
section of the limit point locus. (b) Hopf bifurcation locus
(corresponding to m = 0) and the oscillatory neutral stability curves
for the first three azimuthal modes (m = 1, 2, 3) for Bip = 0.25. (c)
Level contours of transversal eigenmodes for m = 0, 1, 2, 3 at Da =
0.195 on the loci in (b).
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obtained by providing an initial guess with m = 1 in eq 18. For
the parameters considered, extensive simulations suggested that
use of eigenfunctions corresponding to m = 2,3 as initial
conditions typically led to formation of target patterns. Thus, in
all the cases reported here, we used as initial conditions only
those based on m = 1.] Rotating and target patterns coexisted
for Da from ∼0.17 to ∼0.205. Dynamic simulations suggested
that beyond Da = 0.205, until H2, the initial guess
corresponding to m = 1 led to target patterns only.
The dynamics of the exit temperature ⟨θ⟩ of rotating patterns

and targets at Da = 0.195 are presented in Figure 3a,d,
respectively. [Note that the dimensionless time τ in abscissa is
scaled with Le.] The amplitude of oscillation p exhibited by
exit temperature for the case of rotating patterns is about 2
orders of magnitude smaller than that of targets. However,
period of oscillation (P) is similar for both patterns, that is,
23.66 and 26.48 (in τ/Le units) for the rotating and target
patterns, respectively.

Spatial profiles of the rotating patterns in one cycle at τ/Le =
0, P/4, P/2, 3P/4, and P are shown in Figure 3b. During a
cycle, at τ/Le = 0, the hot zone is formed in the right half of the
cross-section. As time progresses, the front separating the hot
and cold regions at the 4 o’clock position is propelled forward,
making the hot zone rotate in the clockwise direction; the
receding front of the hot zone also moves in the clockwise
direction. A rational method to characterize the rotating
patterns is to monitor the tip motion. A method for identifying
and tracking of the tip of a rotating pattern has been proposed
for a two-variable problem.32 In this study, we extend this to a
three-variable problem by observing that the spatiotemporal
dynamics of the average temperature and average conversion
variables are in sync with each other, while the average activity
is not (see Figure S1 in Supporting Information). [We also
found that the spatial 2-D gradients of the activity variable drive
the temperature and conversion (data not shown).] This
observation suggests that local temperature, which is
considered an activator in packed-bed reactors,31 introduces a
frame-invariant rotation to the activity, and in turn, activity
introduces a frame-invariant rotation in the temperature and
conversion variables. Therefore, the tip of the rotating pattern
in every frame can be identified using the condition

θ θ ξ ϕ∇ × ∇Θ = ∇ × ∇Θ ∀ξ ϕ ξ ϕ( ) sup{( ) ( , )}( , ) ( , )tip tip

(20)

where ∇θ and ∇Θ are the 2-D vectors representing respectively
the spatial gradients of θ and Θ. In eq 20, while sup represents
supremum, (ξtip,ϕtip) is the location of the tip position in that
frame. Rotating pattern tip follows a constant diameter circular
path in the cross-section and is represented as yellow circle
around the center in each of the snapshots in Figure 3b.
[Henceforth, wherever pattern contains a single tip, eq 20 is
used to identify the tip location.] Moreover, the path traversed
by the tip from the start of the cycle up to that specific time is
presented in black on the yellow tip-circle in each of the
snapshots in Figure 3b. [Note that the tip position in the

Figure 2. Global bifurcation diagram showing the dependence of the
exit temperature ⟨θ⟩ on Da for the 1-D base steady states (solid black,
stable; dashed black, unstable), rotating (solid gray) patterns, and
target (dotted) patterns. H1 and H2 are the Hopf bifurcation points.

Figure 3. Time series of exit temperature ⟨θ⟩ at Da = 0.195 for (a) rotating and (d) target patterns. P is in τ/Le units. (b) Snapshots of rotating
pattern at τ/Le = 0, P/4, P/2, 3P/4, and P. (e) Spatiotemporal dynamics of target pattern for one period. (c,f) Amplitudes of the first two PCA
modes along with corresponding contours and the energy captured for the motions presented in (a,d). R/dp = 10, Bip = 0.25.
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conversion variable can be identified by replacing θ with x in eq
20.]
In Figure 3e, we present the spatiotemporal motion exhibited

by the target patterns (for one cycle) showing the existence of
hot (H) and cold (C) rings emerging and capturing the whole
cross-section. In a cycle, first, the hot ring (target) emerges at
the wall (ξ = 1), and the front moves toward the center (ξ = 0).
For τ/Le ≈ P/2, the ring covers the whole cross-section with
maximum temperature at ξ = 0. The reactor maintains a high
temperature for some time until the reactants are no more
available. In the meantime, at ξ = 0, the activity goes down
significantly due to product inhibition, and a cold spot is
triggered. This cold wave generated at τ/Le ≈ 3P/4 travels
toward the wall and captures the entire cross-section before the
end of the cycle.
Identification of the characteristics of a spatiotemporal

motion simply by inspection is difficult and tedious. Character-
ization of the motion can be achieved by the use of principal
component analyses (PCA), which separates the motion into a
combination of time-dependent orthogonal amplitudes and
distinct, time-independent spatial components.48 This separa-
tion facilitates an objective approach for extracting coherent
structures embedded in the spatiotemporal data. PCA has been
employed successfully to analyze spatiotemporal motion in
many experimental and theoretical studies,49 including that of
packed-bed reactors.30,31,50 The spatiotemporal data u(ξ,ϕ,τ) is
expressed as a series summation of the form

∑ξ ϕ τ τ ξ ϕ= Μ
=

u( , , ) ( ) ( , )
i

n

i i
1 (21)

where i(τ) and Mi(ξ,ϕ) respectively represent the orthogonal
time-dependent PCA amplitudes and time-independent spatial
modes or PCA modes. Details of the procedure for PCA are
presented in Appendix II.
PCA of the rotating and target patterns in Figure 3a,b and d,e

revealed that the first two PCA modes are sufficient to capture
the maximum energy contained in the spatiotemporal
dynamics. i(τ) of the first two PCA modes and their
corresponding Mi(ξ,ϕ) for the rotating and target patterns,
respectively, are presented in Figure 3c,f. The spatial profile of
the first two PCA modes of rotating patterns (Figure 3c) have
almost equal energy (∼43%), suggesting their equal contribu-
tion to the dynamics and a π/2 rotation relative to each other.
Both PCA modes are similar to those obtained for band motion
or traveling waves under adiabatic conditions,30,31 that is, when
Bip = 0. On the other hand, for the case of targets, there is
clearly one dominant PCA mode (with ∼85% energy)
contributing to the overall dynamics. Moreover, the dominant
PCA mode has a maximal temperature zone ( in the PCA
mode in Figure 3f) interspersed between two relatively colder
zones.
Effect of Pattern Formation on Wall Heat Transport.

Industrial-scale reactors are typically operated under non-
adiabatic conditions, and poor temperature control has been
reported to be one of the key causes of explosions and runaway.
The temperature control of a catalytic reactor is achieved via
heat exchange between the reactor and the circulating coolant.
Hot zones that may form in the reactor will strongly be
influenced by the wall heat transport. On the other hand,
pattern formation studies on laboratory-scale reactors under
adiabatic conditions have been attempted. Adiabatic conditions
are typically created by thermal insulation, which are not perfect

heat shields. In this section, we consider the effect of the wall
heat transport on the dynamics of the spatiotemporal
transversal patterns in the reactor and show that even a slight
heat exchange causing marginal non-adiabatic conditions can
have a very strong impact on the pattern formation.
The wall heat flux (rhs of eq 13b) is a function of the reactor

radius (R/dp), heat transfer coefficient (Bip), and wall
temperature (θw). We conducted all simulations and analyses
for a fixed wall temperature (θw). Here, we first consider the
effect of the reactor radius on hot zone formation and
dynamics. It is important to note that R/dp, an inherent reactor
length scale directly influences both the overall transversal heat
and mass transport and the wall heat flux. In Figure 4a, for Bip =

0.25 and Da = 0.195, we present the global bifurcation diagram
in the planes of R/dp and ⟨θ⟩, showing coexistence of rotating
and target patterns and a threshold R/dp above which only
targets exist. [Note that while the target pattern branches
emerge from the Hopf bifurcation (H in Figure 4a) leading to
exchange of stability, rotating pattern emerges from the point
where the base state solution loses stability to first azimuthal
mode (m = 1) inhomogeneous perturbations. The unstable
base steady state (dashed black in Figure 4a) does not gain
stability due to another Hopf bifurcation even for a very large
R/dp, as is evident from Figure 1b.] Rotating patterns for R/dp
= 10, 20, and 28 along with the locus of the tip (yellow circle)

Figure 4. (a) Global bifurcation diagram showing the dependence of
exit temperature ⟨θ⟩ on R/dp for 1-D base steady states (solid black,
stable; dashed black, unstable), rotating (solid gray), and target
(dotted) patterns. H indicates Hopf bifurcation point. (b) Snapshots
of transversal temperature depicting rotating (i−iii) and target (iv−vi)
patterns for different R/dp.
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and tip position at different fractions of P (black dots) are
respectively shown in Figure 4b-i−iii. Note that while target
patterns coexist for these values of R/dp, we did not find any
rotating patterns for the chosen set of parameters with R/dp >
∼28. Dynamics of target patterns for R/dp = 30, 60, and 100
respectively are presented in Figure 4b-iv−vi. Amplitude p
and period of oscillation P for both rotating and target patterns
for different reactor radius are given in Table 1. While the

period of oscillations of the rotating and target patterns, in the
region where they coexisted, are comparable, the amplitudes of
target patterns are 2 orders of magnitude larger than that of
rotating patterns.
Increasing R/dp from 10 to 20 increases the wall heat

transport from the reactor wall. Larger reactor radius will have
larger cross-sectional area for reaction. [Note that Da is kept
constant; that is, the net amount of reactants available is
unaltered.] As a consequence, heat generated near the outer
rim would be removed relatively faster for higher R/dp,
resulting in trapping the hot zone, where the reaction occurs,
inside the reactor. Moreover, the physical distance between the
forward moving front and that receding shrinks as the reactor
diameter is increased. Given the rotational motion already set
by the temperature variable, the pattern therefore curls around
(Figure 4b-ii), and the tip makes a much smaller circle (yellow).
Further increase in R/dp to 28 leads to a further increase in the
wall heat transport, thereby resulting in deeper curling of the
pattern, with the tip making an even smaller circle (Figure 4b-
iii). However, further increase in the reactor radius to 30 makes
the pattern snap-off from the reactor wall to form a ring and,
thereby, transition into target patterns with one ring moving
from the reactor wall to the center (Figure 4b-iv). On
increasing R/dp even further, multiple rings are formed (Figure
4b-v,vi), with two rings at R/dp = 60 and three at R/dp = 100.
[Note that though we present the patterns for specific R/dp, the
qualitative nature of the pattern, that is, number of rings in the
case of target patterns, is preserved for intermediate R/dp.]
Comparison of the leading PCA modes of the rotating and
target patterns at various R/dp corroborates the fact that
increase in reactor radius can lead to onset of target patterns
from rotating patterns (see Figure S2 in Supporting
Information). While rotating patterns are dominated by two-
armed spiral PCA modes, targets are governed by (parallel)
alternating hot and cold rings.
We next consider the effect of the wall heat transfer

coefficient by varying Bip for R/dp = 10 and Da = 0.195. Based
on the literature data, we fixed the range for Bip as (0, 1.2), with
0 corresponding to adiabatic conditions.51,52 Symmetry break-

ing rotating and target patterns emerge from Hopf bifurcation
at Bip ≈ 0.036 (Figure 5a). Similar to the presence of a

threshold R/dp for coexistence of rotating and target patterns,
we find there exists a threshold Bip beyond which only target
patterns are found. While the dynamics of the rotating patterns
for different Bip are presented in Figure 5b-i−iii, those for
targets are in Figure 5b-iv,v. The amplitude p and period of
oscillations P for typical values of Bip are presented in Table 2.

Table 1. Amplitude p and Period of Oscillation P for
Different R/dp for the Rotating and Target Patterns in
Figure 4a

R/dp

10 20 28 30 60 100

Rotating Pattern

p 0.0052 0.0046 0.0031
P 23.66 27.93 28.52

Target Pattern

p 0.5286 0.3880 0.2709 0.2411 0.1188 0.0640
P 26.48 28.25 28.25 28.25 29.33 29.68

aDa = 0.195, Bip = 0.25, and all other parameters as in eq 19.

Figure 5. (a) Global bifurcation diagram showing the dependence of
exit temperature ⟨θ⟩ on Bip for 1-D base steady states (solid black,
stable; dashed black, unstable), rotating (solid gray), and target
(dotted) patterns. H indicates Hopf bifurcation point. (b) Snapshots
of transversal temperature depicting rotating (i−iii) and target (iv−v)
patterns for different Bip.

Table 2. Amplitude p and Period of Oscillation P for
Different Bip for the Rotating and Target Patterns in Figure
5a

Bip

0.1 0.2 0.3 0.4 0.9

Rotating Pattern

p 0.0058 0.0055 0.0051
P 28.61 24.72 23.66

Target Pattern

p 0.6010 0.5489 0.5103 0.4751 0.3906
P 32.84 27.89 26.48 26.13 25.60

aDa = 0.195, R/dp = 10, and all other parameters as in eq 19.
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The motion of the tip (for rotating patterns) is captured by a
circle (yellow), and the tip location at four different times in
one time period (P) is marked by black dots on the circle. PCA
modes of the rotating and target patterns (in Figure 5b) are
presented in Figure S3 in the Supporting Information. PCA
suggests that higher modes containing two hot zones
interspersed between two cold zones contributes appreciably
(∼10% for Bip = 0.10) to the overall dynamics. However, with
increase in the Bip, the contribution from higher modes
decrease and cause the rotating patterns branch to terminate.
As a consequence, the reactor jumps to the target patterns
branch.
Onset of Spiral Patterns. Given that for Bip = 0.25 and Da

= 0.195 an increase in R/dp forced the hot zone in the rotating
patterns to curl, we next asked a question whether there are
practical conditions where spiral patterns may exist. By
conducting extensive dynamical simulations for various
parameter values within the Hopf neutral stability curves
(Figure 1a,b), we found that different types of spiral patterns
exist very close to the Hopf bifurcation point, and we present in
this section the formation and dynamics of these patterns.
We present the dynamics of the rich variety of rotating and

spiral patterns obtained for Bip = 0.25 and Da = 0.175 for
various R/dp in the form of the locus of tip motion (yellow
circle) with black dot representing the position of the tip at the
start of the cycle, that is, τ/Le = 0 (Figure 6a). Note that the
locus is superimposed on the spatial temperature profile of the
pattern at τ/Le = 0. The period of oscillation P of the patterns

in τ/Le is presented below each snapshot. A rotating pattern
with one hot zone found at R/dp = 10 is in Figure 6a-i. The
nature of hot zone rotation R/dp = 10 is similar to that in
Figure 4b-i; henceforth, we refer to this as the simple rotating
pattern. Increasing the reactor radius from 10 to 20 causes the
hot zone in the simple rotating pattern to split into two hot
zones at the outer rim with both rotating in the cross-section
(Figure 6a-ii). As the pattern has two hot zones, two tips are
expected. However, the tip identification approach in eq 20 fails
to identify both tips as only one supremum of the cross-product
was found. Therefore, we present the complex motion for this
case in Figure 6b at different time points in one cycle. During
one period of oscillation, both hot zones expanded, shrunk,
merged, separated (indicated by yellow dashed arrows), and
rotated clockwise (indicated by white solid arrows). While
merging and expanding over a cycle, the hot zones also rotated
in the cross-section by π/3 radians. Note that the expansion
and shrinking of the hot zones caused the tip to move closer to
and away from the wall. The two hot zones merged and
separated, respectively, at P/2 (Figure 6b) near ξ = 0. [Note
that similar dynamics was observed for R/dp = 15 as well (data
not shown).] When R/dp is increased further to 40, the hot
zones curled even further and formed a clockwise-rotating,
inward-moving spiral pattern (Figure 6a-iii) whose tip motion
is captured by the corresponding locus. With any further
increase of R/dp (up to 100), the clockwise-rotating, inward
moving spirals were preserved (Figure 6a-iv) but with smaller
diameter tip-circle. PCA modes for each of these cases are
presented in Figure S4 in Supporting Information. Modes with
intricate structures dominate the dynamics for R/dp = 20. In the
case of R/dp = 40, the dynamics is equally dominated by
multiple modes, each of which appears to permit two arms of
alternating hot and cold regions, suggesting the onset of spirals.
On the other hand, for R/dp = 100, the dynamics is captured by
multiple many-arm modes. The period of oscillations increases
considerably with R/dp, suggesting that the frequency of
motion increases with a decrease in the domain size.
We next present the onset of spiral patterns near the Hopf

bifurcation point for Bip = 0.037 and Da = 0.195 when the
reactor radius is increased. For these set of parameters and R/dp
= 10, that is, mild heat transport with Bi = Bip(R/dp) = 0.37, a
simple rotating pattern (similar to that in Figure 5b-i) was
found (Figure 6c-i). The locus of the tip is presented as yellow
circle. An increase in R/dp to 30 (Bi = 1.11), that is, increase in
the rate of wall heat transport, led to breakup of the pattern
from the outer rim and, over one cycle, simultaneous
expansion, curling, and movement of a band of hot zone
across the reactor cross-section, as captured in the snapshots at
different time points in one cycle of oscillation in Figure 6d.
The hot zone started at a certain location in the reactor (Figure
6d-i) containing a band and two tips on either end of the band.
Within a quarter period time, while the hot zone moved across
the reactor, the ends of the hot zone curled in. Note that while
the curling of one of the two tips of the hot zone occurred in a
clockwise direction, the other tip curled anti-clockwise (Figure
6d-ii). Just after the middle of the cycle, that is, τ/Le = P/2, the
curling tip of the hot zones merged, and by the end of the cycle
a band separated from the joined tips and exited from the
diametrically opposite location of the cross-section (Figure 6d-
iv). The leftover hot zone remains trapped in the reactor, and
the cycle continues. [Note that this type of spatiotemporal
motion is called anti-spirals.53] Upon further increasing R/dp to
40, clockwise-rotating spirals were found (Figure 6c-iii), which

Figure 6. (a) Snapshot of spatiotemporal pattern at Da = 0.175, Bip =
0.25 for different R/dp. (b) Spatiotemporal dynamics of two-hot zones
rotating pattern at R/dp = 20 (a-ii). (c) Snapshot of spatiotemporal
pattern at Da = 0.195, Bip = 0.037 for different R/dp. (d)
Spatiotemporal dynamics of two-arm rotating pattern at R/dp = 30
(c-ii).

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b01048
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

H

http://dx.doi.org/10.1021/acs.iecr.5b01048


can be viewed as a combination of rotating hot zone and
targets. In fact, further increase of R/dp beyond 40 leads only to
spirals but with multiple bands present simultaneously in the
cross-section, indicating that these spirals arise by a
combination of rotating pulse and multiple-ring targets (see
Figure S5 in Supporting Information).

■ CONCLUSIONS AND DISCUSSION
Spatiotemporal pattern formation in packed-bed reactors has
been predicted to occur under adiabatic conditions and is
known to strongly depend on reaction kinetics.31 Packed-bed
reactors are usually operated under non-adiabatic conditions,
and maintaining perfectly adiabatic conditions, even in
laboratory-scale reactors, is extremely difficult. Using a
blocking−reactivation kinetic model, which is well validated
for ethylene hydrogenation processes, we predict formation of a
rich variety of intricate patterns, such as rotating patterns, target
patterns, spirals, and anti-spirals, in catalytic, shallow, packed-
bed reactors under non-adiabatic conditions. These patterns are
rather different from those predicted under adiabatic
conditions. Prediction of hot zones in shallow reactors under
non-adiabatic conditions is a step towards finding pattern
formation in more realistic long, non-adiabatic reactors.
Identification of an appropriate initial guess using linear

stability analysis is necessary for simulation of spatiotemporal
patterns. Under non-adiabatic conditions, the coefficient of the
linearized reaction term in the model equation will be an a
priori unknown function of the radial position, making the
linearized model equations not amenable to analytical solution
strategies. We therefore propose a combination of analytical (in
azimuthal direction) and numerical treatment to solve the
eigenvalue problem in eq 14, and the solution is used to predict
spatiotemporal patterns.
Our study shows that non-adiabatic reactors can permit

inwardly moving spirals that can be obtained from rotating
patterns and/or inwardly moving targets by perturbing the
parameters. For example, for a reactor with R/dp = 40 and
certain wall heat flux (Bip = 0.25), a slight change in the
residence time (Da) takes the reactor from a single ring target
pattern (at Da = 0.195, Figure 4) to clockwise-rotating spiral
patterns (at Da = 0.175, Figure 6a). This may be due to the fact
that a slight perturbation of Da by 0.02 makes the system
operate near the Hopf bifurcation (Figure 1b), where multi-arm
modes (see Figure S4 in Supporting Information) may interact
to force complex overall spatiotemporal dynamics. We found
that, for R/dp = 100, decreasing Bip forces targets (Figure 4b-vi)
to become spirals (Figure 6c-iv). Moreover, increasing the
reactor diameter, which is an important scale-up parameter,
causes a transition from rotating patterns to spirals, where again
higher modes seem to orchestrate the dynamics (Figure 6a,c).
In fact, such a transition and interaction of higher modes
contributing to the dynamics have been noted during NO +
CO surface reaction on microstructured Pt(100).54 Golubitsky
et al.47 suggested that such interactions dictate spirals and that
non-zero wall flux is necessary for spiral patterns to form. This
is due to the fact that zero wall flux cannot permit multi-arm
spiral modes. Moreover, targets can be viewed as a super-
position of clockwise- and anti-clockwise-rotating multi-arm
spirals with same amplitudes.47 This embedding of spirals in
targets could be the cause for the observed transition between
the two, under appropriate perturbations.
Our study also shows that rotating patterns may form in

shallow, non-adiabatic packed-bed reactor for a wide range of

reactor radius, R/dp, even for small Bip = 0.037 (Figure 6c). The
dominant modes that govern the rotating patterns (for
sufficiently large reactor diameter) are similar to those obtained
for traveling waves or band motion in adiabatic reactors.30,31

This suggests that mild wall heat transfer (characterized by a
small wall heat transfer coefficient) may force the traveling
waves or band motion at Bip = 0 (adiabatic condition) to
transition into rotating waves under non-adiabatic conditions.
Experimental studies conducted under atmospheric con-

ditions in shallow, packed-bed reactors show that the frequency
of rotating patterns is about 7 × 10−5 Hz during CO
oxidation,50 and the frequency of anti-phase motion is about
3 × 10−4 Hz during hydrogenation of ethylene and acetylene
mixtures.11 In our study, we found the frequency of oscillations
to be in the range 2.45 × 10−5−6.95 × 10−5 Hz for a typical
reactor residence time of 2.7 s used in these laboratory
experiments.11 Hartmann et al.54 noted that, during NO + CO
surface reaction on microstructured Pt(100), the spiral pattern
oscillation frequency was increased about 3 times by decreasing
the domain size 2.5 times. Moreover, we found that the
frequency increases with Bip (Table 2). Given that the extent of
wall heat transport is characterized by the tunable parameter Bi
= Bip(R/dp), and Bip and R/dp have opposing effects on the
oscillation frequency, we conjecture that there must be an
optimal Bi at which a maximum frequency may exist.
Knowledge of the maximum oscillation frequency can help
design control strategies for good heat management.
Reactor scale-up is an important aspect in designing

industrial-scale processes. We find that doubling the reactor
diameter (from R/dp = 10 to 20) causes the emergence of
complex rotating patterns containing multiple interacting hot
zones (Figure 6a). However, further doubling the reactor
domain (R/dp = 40) leads to the emergence of clockwise,
inward-moving spiral patterns (Figure 6a). Tracking the tip
motion is traditionally used to characterize rotating and spiral
patterns.55 However, when multiple hot zones rotate or spiral
simultaneously, an objective, frame-invariant method (which
can be automated) to track motion of all the tips is currently
unavailable. Development of such a method could prove useful
in characterizing complex spatiotemporal patterns containing
multiple interacting hot zones, as is the case observed in our
study when Bip = 0.25, Da = 0.175, R/dp = 20 (Figure 6a-ii) or
Bip = 0.037, Da = 0.195, R/dp = 30 (Figure 6c-ii) and in other
experimental studies.11

Strong interactions between characteristically different higher
transversal modes govern complex spatiotemporal patterns. It is
an open question as to what these interactions are, what
different classes of patterns these interactions may lead to, and
how these depend on various system parameters. A systematic
method to identify the interactions between different trans-
versal spatial modes is needed to address these questions.

■ APPENDIX I

Codimension-1 Locus
1. Construction of Hopf Neutral Stability Locus. Hopf

neutral stability point is obtained by solving simultaneously eq
16 and the following:

ω ωξ σ ξ| − · + =  [ ] ( ) ( ) 0u u r iss (AI-1)

ω ωξ σ ξ| − · − =  [ ] ( ) ( ) 0u u i rss (AI-2)

ω ωξ ξ|| || + || || − =( ) ( ) 1 0r i (AI-3)
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ω ωξ ξ· =( ) ( ) 0r i (AI-4)

Note that eqs AI-1 and AI-2 are obtained by separating the
real and complex parts of eq 17, and eqs AI-3 and AI-4 together
ensure non-triviality. Hopf neutral stability curve is obtained by
performing a pseudo-arc length continuation46 of the Hopf
neutral stability points.
2. Construction of Limit Point Locus. At a limit point, the

eigenvalue λ is zero, and the corresponding eigenvector ω(ξ) is
purely real. Therefore, a limit point may be obtained by
simultaneously solving eq 16 and u|uss·ω(ξ) = 0 with the
non-triviality condition ∥ω(ξ)∥ = 1. Codimension-1 limit point
locus (in Figure 1a) is obtained by performing a pseudo-arc
length continuation46 of the limit point.

■ APPENDIX II

Principal Component Analysis
Spatiotemporal data u(ξ,ϕ,τ) are represented by a series
u(ξ,ϕ,τ) = ∑i=1

n
i(τ)Mi(ξ,ϕ), where i(τ) and Mi(ξ, ϕ)

respectively represent the orthogonal time-dependent ampli-
tudes and time-independent spatial modes or PCA modes.29

Therefore,

ξ ϕ ξ ϕ δ⟨Μ ·Μ ⟩ =( , ) ( , )i j ij (AII-1)

τ τ λ δ=( ) ( )i j i ij (AII-2)

Using q snapshots of the temporal pattern, PCA modes
Mi(ξ,ϕ) are estimated by finding the eigenvectors of the
eigenvalue problem

ξ ϕ λ ξ ϕΜ = Μ ( , ) ( , )i i i (AII-3)

where the autocorrelation matrix  = (1/q)∑ =i
q

1u(ξ,ϕ,τi)
u[(ξ,ϕ)′,τi] and λi captures the energy corresponding to PCA
mode Mi(ξ,ϕ), that is, the fractional contribution of the PCA
mode to the overall dynamics of the pattern. The amplitudes

i(τ) are obtained using the expression

∑τ ξ ϕ τ ξ ϕ= Μ
=

u( ) ( , , ) ( , )i
i

q

i i
1 (AII-4)

which is essentially a projection of the data set on the PCA
modes. The PCA routine in Matlab was used to identify the
PCA modes and the amplitudes.
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■ ABBREVIATIONS
Ac = constant coefficient for initial condition in eq 18

= orthogonal time-dependent amplitude
p = amplitude of oscillation of exit temperature

 = autocorrelation matrix
Bi = Biot number
1 = dimensionless rate of blocking of catalytic active sites,
defined by eq 3
2 = dimensionless rate of reactivation of blocked sites,
defined by eq 3
C = concentration, mol m−3

Cp = specific heat capacity, J kg−1 K−1

dp = particle diameter, m
D = species diffusion coefficient, m2 s−1

Da = Damköhler number, defined by eq 8
u = first Frećhet derivative
E = activation energy, J mol−1

 = vector of steady-state equations
h = wall heat transfer coefficient, W m−2 K−1

H = Hopf point
k = reaction rate constant, s−1

k0 = Arrhenius rate constant, s−1

L = reactor length, m
Le = Lewis number
M = orthogonal matrix
N = radial grid points
P = period of oscillation
Pe = Peclet number
 = perturbation
q = number of snapshots of the temporal pattern
r = radial coordinate, m
R = radius of the reactor, m
R̅ = universal gas constant, J mol−1 K−1

 = dimensionless reaction rate, defined by eq 9
t = time, s
T = temperautre, K
u = vector of state variables
v = superficial velocity, m s−1

x = conversion
z = axial coordinate, m

Greek Letters
Θ = fraction of blocked catalytic active sites in eq 2
τ = dimensionless time, defined by eq 4
θ = dimensionless temperature
β = adiabatic temperature rise, defined by eq 8
η = dimensionless axial coordinate, defined by eq 8
ξ = dimensionless radial coordinate, defined by eq 8
γ = dimensionless activation energy, defined by eq 8
−ΔH = heat of the reaction, J mol−1

ε = bed voidage
λ = eigenvalue
λ ̅ = effective thermal conductivity, Wm−1 K−1

ϕ = azimuthal coordinate
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σ = coefficient of imaginary eigenvalue
ω = eigenvector
▽ = gradient operator

Others
· = dot product
× = cross product
⟨...⟩ = average quantity
∥·∥ = 2-norm
∇⊥

2 = Laplacian in polar coordinates
sup = supremum

Superscripts
h = heat
m = mass
t = transpose

Subscripts
BL = blocking
RE = reactivation
in = inlet
s = solid
f = fluid
a = axial
⊥ = transversal
p = particle
w = wall
ss = steady state
m = azimuthal mode number
r = real
i = imaginary
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