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Abstract Genome scale metabolic model provides an

overview of an organism’s metabolic capability. These

genome-specific metabolic reconstructions are based on

identification of gene to protein to reaction (GPR) associ-

ations and, in turn, on homology with annotated genes from

other organisms. Cyanobacteria are photosynthetic pro-

karyotes which have diverged appreciably from their

nonphotosynthetic counterparts. They also show significant

evolutionary divergence from plants, which are well stud-

ied for their photosynthetic apparatus. We argue that con-

text-specific sequence and domain similarity can add to the

repertoire of the GPR associations and significantly expand

our view of the metabolic capability of cyanobacteria. We

took an approach that combines the results of context-

specific sequence-to-sequence similarity search with those

of sequence-to-profile searches. We employ PSI-BLAST

for the former, and CDD, Pfam, and COG for the latter. An

optimization algorithm was devised to arrive at a weighting

scheme to combine the different evidences with KEGG-

annotated GPRs as training data. We present the algorithm

in the form of software ‘‘Systematic, Homology-based

Automated Re-annotation for Prokaryotes (SHARP).’’ We

predicted 3,781 new GPR associations for the 10 pro-

karyotes considered of which eight are cyanobacteria spe-

cies. These new GPR associations fall in several metabolic

pathways and were used to annotate 7,718 gaps in the

metabolic network. These new annotations led to discovery

of several pathways that may be active and thereby pro-

viding new directions for metabolic engineering of these

species for production of useful products. Metabolic model

developed on such a reconstructed network is likely to give

better phenotypic predictions.
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Approach
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Pfam Protein families
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RPS-BLAST Reverse Position-Specific BLAST

SHARP Systematic, Homology-Based Automated

Re-annotation for Prokaryotes

UniProt Universal Protein Resource

Introduction

Metabolic network orchestrates the interconversion of

metabolites catalyzed by specific enzymes. These enzymes

control the network’s response (Syed and Yona 2009 and

references there in, Bauer-Mehren et al. 2009, Reed et al.

2006). Metabolic network of different cyanobacterial spe-

cies has been implicated in engineering (Zhou and Li 2010;

Ducat et al. 2011; Wang et al. 2012) the organism for

production of various biofuel precursors (Peralta-Yahya

et al. 2012; Quintana et al. 2011) such as ethanol (Deng and

Coleman 1999; Dexter and Fu 2009), iso-butanol (Varman

et al. 2013), butanol (Lan and Liao 2011; Lan and Liao

2012). Moreover, this paradigm (Wang et al. 2012) is being

attempted for production of chemicals such as ethylene

(Takahama et al. 2003), iso-butyraldehyde (Atsumi et al.

2009), poly-3-hydroxybutyrate (Tyo et al. 2006), isoprene

(Lindberg et al. 2010) etc. Efficient engineering of a spe-

cies and analyses of metabolic network hinges on the

availability of accurate gene–protein–reaction (GPR)

association of all the enzymes in the network (Klimke et al.

2011; Kyrpides 2009; Ouzounis and Karp 2002).

Functional annotation tools for identifying GPR asso-

ciations are paramount to metabolic network reconstruction

(MNR) (Ogata et al. 1999; Francke et al. 2005; Feist and

Palsson 2008; Feist et al. 2009). Based on curated and

experimental data, a number of tools have been developed

to identify unannotated enzymes (Kumar et al. 2012; Co-

peland et al. 2012 and references therein, Faust et al. 2011;

Kumar et al. 2007). GPRs of metabolic network can be

identified using (a) manual curation method, which

requires extensive primary experimental information

(Furnham et al. 2009) (e.g. UniProtDB (UniProt Consor-

tium 2010) and BRENDA (Scheer et al. 2011)); or

(b) automated methods, which is a knowledge-based

approach (Watson et al. 2005) and is primarily based on

sequence similarity (Adriaens et al. 2008; Viswanathan

et al. 2008). Due to limited availability of experimental

information, development of efficient automated methods

to decipher correct annotations is required (Radivojac et al.

2013). In addition to the local sequence similarity (Altshul

et al. 1990), most of these methods use several evidences to

improve confidence levels of annotation predictions. Some

recently developed methods include KAAS (Moriya et al.

2007), RAST (Aziz et al. 2008), CINPER (Mao et al.

2012). Irrespective of integration of any number of

sequence similarity-based evidences, certain level of

uncertainty is expected. The Gibbs sampling-based global

probabilistic annotation (Plata et al. 2012) which incorpo-

rates these uncertainties requires experimentally validated

information and is not scalable.

GPR associations based on automated methods, and

other related information for various species are stored in

many public databases which include KEGG (Kanehisa

and Goto 2000), MetaCyc (Caspi et al. 2006), SEED

(Overbeek et al. 2004). Despite the availability of so many

methods, GPR association for many enzymes is missing for

several organisms. It is possible that these enzymes may

have originated from phylogenetically distant species;

particularly in those organisms (such as cyanobacteria) that

diverged appreciably from their counterparts during evo-

lution. Therefore their functional annotation prediction will

require consideration of remote context-specific homologs

(Ouzounis and Karp 2002). PSI-BLAST is a tool that can

be used for this purpose (Altschul et al. 1997). Based on

PSI-BLAST, we develop and demonstrate a novel meth-

odology ‘‘Systematic, Homology-based Automated Re-

annotation for Prokaryotes (SHARP)’’ to predict GPR

associations. In addition to distant context-specific

sequence similarity, this method uses as evidences func-

tional region similarities, and bidirectional hits. An opti-

mization, probabilistic-based approach using preexisting

annotations (from KEGG) as training set is used for

annotation prediction and for estimation of the species-

specific and enzyme-specific significances of different

evidences. We report GPR association for several enzymes

unannotated by KEGG in 10 different bacterial species,

predominantly from cyanobacteria family.

Results

Systematic, Homology-based Automated Re-annotation

for Prokaryotes (SHARP)

Flow chart depicting the steps involved in SHARP is pre-

sented in Fig. 1. Consider a species oi [ O, metabolic

enzymes of which need to be annotated. As a first step, we

create an offline Library of Metabolic Information (LMI) by

distilling various metabolism-related information about the

organism oi available in a variety of public databases (see

Materials and methods). Next, for a query enzyme ej [ E in

the query organism oi, using PSI-BLAST (Altschul et al.

1997), we find the candidate sequence set Ci,j = {Ci,j,k} (see

Materials and methods). Hereafter, subscripts i, j and k will,

respectively, refer to query species oi, query enzyme ej, and

the kth candidate in Ci,j.

Candidates obtained in the first iteration of PSI-BLAST

consist of close hits. However, in subsequent iterations, the
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sequences picked are enriched with those remote homologs

functions of which may deviate significantly from those

obtained in the first iteration. Therefore, additional func-

tion-based evidences can be used to identify the best can-

didate in Ci,j for GPR association of enzyme ej. Therefore,

we use as evidences the following:

(A) Reverse BLAST-based pathway similarity: Evolu-

tionarily conserved enzymes across different species

are expected to participate in similar metabolic

pathways. In order to capture the extent of participa-

tion of the candidate sequence in relevant pathways,

we define a score Sj,k,b (see Materials and methods) that

quantifies the average pathway similarity that the

candidate sequence has with its homologs.

(B) Domain conservation: Proteins have a modular

structure consisting of domains (Marchler-Bauer

et al. 2009, 2010, 2011) and is based on the function

performed by these domains. Therefore, comparison

of the families into which these domains fall can

serve as good evidences (Overbeek et al. 2007). We

consider three different domain qualifiers to identify

their extent of conservation:

(i) Domain conservation (CDD): For every candi-

date Ci,j,k, a score Sj,k,d (see Materials and

methods) measures the fraction of the con-

served domains in query enzyme ej present in

the candidate.

(ii) Clusters of orthologous groups of proteins (COG)

conservation: As each group corresponds to an

ancient conserved domain (Tatusov et al. 1997,

2003), candidates are expected to share these with

ej. For a candidate Ci,j,k, we capture in score Sj,k,c

(see Materials and methods) the fraction of the

expected COGs of the query enzyme ej that is

conserved in the candidates.

(iii) Pfam family conservation: Based on the differ-

ent combination of functional domains in a

protein, they are classified into various families

(Punta et al. 2012). Candidates are therefore

expected to belong to same families as ej. For a

candidate Ci,j,k, we capture this conservation in

score Sj,k,f (see Materials and methods).

Training procedure for weight parameter estimation

Evidences are species and enzyme specific. Confidence of

an automated annotation method can be improved by

weighting an evidence score according to its relative rel-

evance. For this purpose, we introduce a query species and

query enzyme-specific weight parameter vector Ai;j ¼
alf g8l ¼ b; d; c; f where a’s are the individual weights.

This vector must be considered for identification of the

candidate for annotation for a query enzyme ej. Using these

weights, we combine various evidence scores to define an

overall score.

S0
j;k ¼ Ai;j � St

j;k;: ð½1�Þ

where Sj,k,: is the raw score vector of kth candidate. Esti-

mation of overall score requires priori estimates of Ai,j. As

the weights are unavailable a priori, we introduce a sys-

tematic training procedure (Fig. 1) using known GPR

association (reported by KEGG) for various enzymes

across several species to find the optimal weights that will

identify the correct candidate (see Materials and methods).

The optimal weights are estimated for as many KEGG-

Fig. 1 Flow chart depicting the methodology of SHARP. O, R, E, H,

B, D, F, G, I and A, respectively, refer to list of bacterial species, list

of 16s rRNA sequence of all species in O, metabolic enzyme superset,

amino acid sequences of all enzymes in E, name of the pathways from

KEGG, domain names, family names, orthologous groups, gene IDs

and weights. oi, ej, hs, and kc, respectively, are query organism, query

enzyme, query sequence and SHARP predicted candidate for

annotation of enzyme ej. Ci,j and Sj,k are the vectors of candidates

obtained from PSI-BLAST and evidence score matrix, respectively.

Ai,j and ai,j, respectively, are the optimal weight vectors for enzymes

in training set and enzymes for SHARP annotation. While the training

procedure block consists of finding optimal weight vectors corre-

sponding to the correct gene ID and generation of the joint probability

distribution Pr(A), the annotation prediction uses a combination of

bootstrapping method for optimal weight vector estimation and the

training information for inferring the GPR association for a query

enzyme. Subscripts i, j, and k, respectively, refer to the query

organism oi, query enzyme ej, and kth candidate sequence in Ci,j
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annotated enzymes for all the species considered. Using

these optimal weights, we next generate a joint probability

distribution Pr(A) which is the probability of finding a

correct sequence whose weights vector A maximizes the

overall score (across all candidates for the query enzyme

ej). This distribution will be used to identify the correct

candidate sequence, as detailed below.

Annotation of unannotated enzymes

We employ a bootstrapping procedure to identify the best

candidate Ci,j,k for GPR association of query enzyme ej as

the one that maximizes the probability Pr(A) (see Materials

and methods). The hallmark of this bootstrap method is

that it enables identification of only those candi-

date(s) which are likely to have weights that can lead to a

maximum overall score. As a result, this sequence is likely

to be the correct sequence for the query enzyme ej.

Completely automated software written using Perl pro-

gramming language (version 5.8.8) of the proposed meth-

odology SHARP is available, upon request. (Details of the

software, installation, a list of libraries used, and execution

protocol are in Suppl Mat. 2.)

Annotation of metabolic enzymes

We considered genome-wide annotation of 10 bacterial

species (listed in Table 1) using SHARP. As different

cyanobacterial species are being considered as model

organisms for biofuel precursor production, we considered

eight species from three clades of cyanobacteria species for

re-annotation (Memon et al. 2013). For example, from

Clade B, we consider Cyanothece sp. strain ATCC 51142

which exhibits temporal separation of oxygenic photosyn-

thesis and oxygen-sensitive nitrogen fixation processes and

therefore has recently been implicated for hydrogen

production (Krishnakumar et al. 2013; Feng et al. 2010).

Moreover, as cyanobacteria are photosynthetic prokaryotes

which have diverged appreciably from their nonphotosyn-

thetic counterparts, these species are amenable for dem-

onstration of identification of GPR association using

context-specific, remote homology. In addition, we also

chose Escherichia coli K12 MG1655 and Corynebacterium

glutamicum ATCC 13032 which are well annotated and

considered as standards.

SHARP was able to find the optimal weights for *86 %

(4062/4734) of all the KEGG-annotated enzymes across

these 10 species (Table 1). This suggests that information

gathered by SHARP for training purposes is reliable. Key

reasons for the inability to predict the optimal weights and

therefore annotations for the remaining 14 % are

(a) remote homologs belonging to the query species were

not found for the query sequence, or (b) failure to predict

optimal weights. Using a total of 4,062 enzymes across 10

species as training set, we predict annotation for 3,781

enzymes which is used for filling 7,718 gaps (Table 2) in

the metabolic network. (A list of the EC numbers along

with the gene IDs for all new annotations is provided in

Suppl. Mat. 3.) Note that only enzymes that participate in

active pathways reported by KEGG are considered. For

most of the annotations predicted by SHARP, a reverse

PSI-BLAST also resulted in the same GPR association.

This suggests that the GPR associations predicted are one-

to-one.

Individual weights for every enzyme reflect the relative

importance of the corresponding evidence in identifying

the correct annotations. The distribution of the nonzero

weights normalized with the total number of corresponding

species-specific evidence score available is presented in

Fig. 2 for Synechococcus sp. PCC 7002. Distribution for

the remaining nine species is presented in Fig. S1 (Suppl.

Mat. 4). Note that the weights predicted to be zero by

optimization suggests that individual evidence score does

Table 1 Number of KEGG-

annotated enzymes for the 10

species considered and

correspondingly those that were

used for training SHARP

KEGG ID Species Total Training set

from KEGG

ana Anabaena sp. PCC 7120 472 449

ava Anabaena variabilis ATCC 29413 503 450

cgl Corynebacterium glutamicum ATCC 13032 448 375

cyc Cyanothece sp. PCC 7424 485 400

cyt Cyanothece sp. ATCC 51142 462 415

eco Escherichia coli K12 MG 1655 636 520

gvi Gloeobacter violaceus PCC 7421 442 361

syc Synechococcus elongatus PCC 6301 429 343

syn Synechocystis sp. PCC 6803 445 420

syp Synechococcus sp. PCC 7002 412 329

Total 4,734 4,062
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not contribute to the overall score for that enzyme. Weights

distribution suggests that the order of significance of var-

ious evidences in terms of its contribution to overall score

for GPR association prediction is (1) pathway similarity,

(2) COG conservation, (3) PFAM conservation, and (4)

CDD conservation. The distribution of the actual (avail-

able) scores supports this (Fig. S2 in Suppl. Mat. 4).

The predictive ability of the proposed method depends

on the extent of training information captured by the joint

probability distribution Pr(A). We find that the variation in

Shannon entropy (Shannon 1948) associated with

Pr(A) due to the number of species included sequentially in

the training set is insignificant (Fig. S3, Suppl. Mat. 5).

This suggests that information content in Pr(A) is, rela-

tively, independent of the number of species. Therefore, we

believe that the method is scalable.

New annotations that we report fall in several important

metabolic pathway categories such as carbohydrate

metabolism, and amino acid metabolism. SHARP is able to

fill (Table 2) significant number of gaps in several path-

ways. A consolidated list of newly annotated enzymes

participating in each of these individual pathways for every

species is presented in Suppl. Mat 6.

Discussion

In this study, we present a novel PSI-BLAST-based

methodology SHARP for GPR association of the metabolic

enzymes involved in prokaryotes. We believe that PSI-

BLAST-based method for functional annotation can pre-

dict annotations of several enzymes for which local

sequence similarity method fails. In Fig. 3 (for Synecho-

coccus sp. PCC 7002) and in Fig. S4 (for the other nine

species, Suppl. Mat 7), we compare the histograms of the

phylogenetic distance between the query organism and the

species from which the functional annotation for an

enzyme is picked for those in training set and for those

newly annotated by SHARP. This comparison clearly

shows a shift in the histogram toward higher phylogenetic

distance indicating that the new annotations have indeed

been picked from remote homologs. For example, consider

the butanoate metabolism pathway in Synechococcus sp.

PCC 7002 KEGG pathway entry of which is syn00650

(Fig. S5, Suppl. Mat. 8). In this pathway, SHARP predicted

annotations for 16 new enzymes with a very good query

coverage for most of them (Table 3). Table 3 also shows

that BLAST failed to predict annotations for these

enzymes. This may be because they may have evolution-

arily deviated significantly as substantiated by the phylo-

genetic distance of the species from which the annotation is

picked. So, these enzymes may have a homology with

species that is phylogenetically not so close and therefore,

their annotations cannot be predicted by local sequence

similarity.

For more than 83 % of all the enzymes considered by

SHARP in each of the four species cyt, cyc, syn, and syp,

the GPR association identification matched with that

reported in Pathway Genome Database (Karp et al. 2010).

(For a detailed comparison, see Table S4 in Suppl. Mat 9.)

Table 2 Total number of enzymes and gaps newly annotated by SHARP in the 10 species considered

Species ana ava cgl cyc cyt eco gvi syc syn syp Total

Total number of enzymes newly annotated 433 397 273 315 389 392 456 485 236 405 3,781

Number of gaps filled in different pathway categories

KEGG-based pathway category Code

Carbohydrate metabolism CM 223 191 177 153 212 178 225 236 103 203 1,901

Lipid metabolism LM 105 100 88 74 43 121 135 130 57 139 981

Amino acid metabolism AM 191 170 115 154 197 172 219 244 145 221 1,828

Xenobiotics biodegradation and metabolism XM 97 135 49 80 111 149 99 108 58 65 951

Metabolism of cofactors and vitamins VM 48 45 35 37 47 41 58 66 21 55 453

Biosynthesis of other secondary metabolites BM 10 9 5 8 4 5 10 6 5 9 71

Energy metabolism EM 63 64 30 64 51 40 73 72 21 72 550

Metabolism of terpenoids and polyketides TM 14 8 5 5 11 10 13 14 11 9 100

Metabolism of other amino acids AA 33 26 24 18 25 43 35 40 21 31 296

Nucleotide metabolism NM 59 51 45 43 56 26 58 65 31 55 489

Glycan biosynthesis and metabolism GM 3 2 1 4 2 3 10 9 4 7 45

Translation TL 2 5 5 3 7 6 9 6 4 6 53

Total gaps filled 848 806 579 643 766 794 944 996 481 872 7,718

The gaps are presented for 13 KEGG identified pathway categories. Detailed list of new annotations by SHARP and corresponding scores,

optimal weights is in Suppl. Mat 3 and the corresponding pathway-wise compilation is in Suppl. Mat 6
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Similar comparison for species cyt (Saha et al. 2012) and

syn (Knoop et al. 2010) with those used in Flux balance

analyses shows about 94 % match in the GPR association

(Table S5 in Suppl. Mat. 9). GPR association identification

in the training set and predictions by SHARP agree very

well with those by existing methods such as pathway tools

(Karp et al. 2010), flux balance analyses. (Knoop et al.

2010).

Enzymes annotated by SHARP have led to identification

of several industrially important pathways. For example, in

the network involved in butanoate metabolism (Fig. S5 in

Suppl. Mat. 8) in Synechococcus sp. PCC 7002, we predict

annotations for EC 4.1.1.15, 2.6.1.19, and 1.2.1.24 which

are involved in the metabolic pathway transforming

L-Glutamate to succinate with 4-aminobutanoate and

succinate semialdehyde as intermediates. Moreover, in

methane metabolism pathway, we associate geneID SYN-

PCC7002_A0853, syc0566_c, and PCC7424_5201 to EC

1.14.13.25 in Synechococcus sp. PCC 7002, Synechococcus

elongatus PCC 6301 and Cyanothece PCC 7424, respec-

tively (Suppl. Mat. 3). This enzyme catalyzes methane to

form methanol. Besides, in Anabaena variabilis ATCC

29413, Anabeana sp. PCC 7120, and S. elongates PCC

6301, SHARP was able to annotate EC 1.1.1.244, 1.2.1.46,

and 1.2.1.2, respectively (Suppl. Mat. 3). These enzymes

are directly involved in pathways that convert methanol to

CO2. These GPR association predictions can now be used

to design pertinent metabolic engineering strategies to

improve the productivity of appropriate biofuels (Quintana

et al. 2011). In addition, SHARP predicts new annota-

tion(s) for several enzymes in amino acid metabolism

(Table 2). These enzymes can now be considered targets

for novel synthetic biology strategies (Purnick and Weiss

2009) to increase the ability of the species to process amino

acids. Phosphorylation of D-glycerate to 3-phosphoglycer-

ate in ‘‘glycoxylate and dicarboxylate metabolism’’ path-

way is an important biochemical step that helps in carbon

fixation in a few cyanobacterial species (Bartsch et al.

2008). In Anabeana sp. PCC 7120, SHARP predicted GPR

association for 24 enzymes in this pathway—particularly,

those of EC 1.1.1.26, 1.1.1.29, 1.1.1.60, and 1.1.1.79 which

are directly involved in the production of D-glycerate and

those of EC 4.1.3.1 involved in the production of

glyoxylate.

Annotation predictions based on computational biology

methods must be validated experimentally, which provide

the highest confidence (Thiele and Palsson 2010). The

annotation that we report for EC 1.2.1.24, which catalyzes

conversion of succinate semialdehyde to succinate has

been experimentally validated (Zhang and Bryant 2011). In

the isoleucine synthesis pathway of Cyanothece ATCC

51142, geneID cce_0248 has been predicted as the correct

annotation (see Fig. S6 in Suppl. Mat. 8) for EC 2.3.1.182,

which has recently been established using experimental

approaches (Wu et al. 2010). Such a validation is not

possible for most of the annotations due to unavailability of

Fig. 2 Distribution of optimal weights for (a) Pathway similarity

evidence, (b) Domain conservation evidence, (c) COG conservation

evidence, and (d) Pfam conservation evidence for Synechococcus sp.

PCC 7002. The total number of species-specific scores available for

each of evidences was used for normalizing the corresponding

distribution

Fig. 3 Histograms of the phylogenetic distance between the query

enzyme and the species from which the functional annotation is

picked for enzymes in the training set (white) and for those GPR

association of which is predicted by SHARP (gray) for Synechococ-

cus sp. PCC 7002. Phylogenetic distance histograms for other species

are given in Fig. S4 in Suppl. Mat 7
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appropriate experimental data. However, the predictions

made by SHARP can provide pinpointed directions for ex-

perimentalists to validate annotations using techniques such

as specific gene-knockout (Puchalka et al. 2008), NMR

ligand screening (Chen et al. 2011), and gene expression

studies (Moskal et al. 2007; Becker and Palsson 2008).

Use of species and enzyme-specific optimal weights,

estimated by SHARP as a measure of the relative impor-

tance (Thiele and Palsson 2010) of various evidences,

provides a novel approach for quantifying the confidence

levels of the predicted GPR association. Such quantifica-

tion can be incorporated appropriately in genome-scale

metabolic models to identify the confidence levels of the

model. For instance, a cut-off on the weights for profile

search-based evidences reflecting the reliability of the

existence of a particular biochemical reaction may be

considered as additional constraint while estimating the

metabolic flux distributions using appropriate optimization

strategies (Shastri and Morgan 2005; Montagud et al.

2010). Ability of SHARP to predict annotations of meta-

bolic enzymes and to estimate the associated confidence

levels is only limited by the availability and veracity of the

necessary information in LMI. Additional evidences such

as operon information (Memon et al. 2013) which can be

easily incorporated in SHARP will help in improving the

confidence levels in the ability of automated methods to

predict accurate GPR association.

Materials and methods

Library of metabolic information

The LMI was created with (a) list of bacterial species

O containing sm = 1,332 species along with a roster of

active pathways in each of them, (b) 16s rRNA sequences

R of all species in O (as of September 27, 2011) down-

loaded from NCBI (Sayers et al. 2011), (c) Metabolic

enzyme superset (E) from KEGG (Kanehisa and Goto

2000) with corresponding Enzyme Commission (EC)

number, (d) names of the pathways B in which the enzymes

in E participate (available as of December 2011) from

KEGG, (e) amino acid sequence H of all the enzymes in

E from UNIPROT (Uniprot C, 2010), (f) highly conserved

domains D (Marchler-Bauer et al. 2009, 2010), orthologous

groups G (Tatusov et al. 1997, 2003) of all the enzymes in

E using standalone tools (RPSBLAST) from NCBI,

(g) names of family F (Finn et al. 2010) to which each of

the enzyme in E belongs to using RPSBLAST, and

(i) enzyme-specific gene IDs I.

Table 3 Metabolic enzymes in butanoate metabolism network (KEGG pathway 00650) for Synechococcus sp. PCC 7002 for which GPR

association was predicted by SHARP

Enzyme Species (from which query

sequence was taken)

Phylogenetic

distance

PSI-BLAST e-value

(from 4th iteration)

BLAST

e-value

Query

coverage

Identity

1.1.1.304 Staphylococcus epidermidis RP62A 0.247543 2.00E-12 NF 45.13618677 22.22

1.1.1.35 Brevibacillus brevis NBRC 100599 0.235522 1.00E-37 NF 38.77805486 14.86

1.1.1.36 Bacillus cereus ATCC 14579 0.237744 3.00E-26 4.00E-23 99.58506224 23.86

1.1.1.4 Bacillus cereus ATCC 14579 0.237744 2.00E-25 5.00E-21 94.79768786 20.86

1.1.1.61 Clostridium difficile 630 0.244814 4.00E-28 NF 97.03504043 17.13

1.1.1.83 Acidaminococcus fermentans DSM 20731 0.21706 2.00E-77 4.00E-34 99.15730337 30.68

1.2.1.24 Bacillus amyloliquefaciens FZB42 0.242012 2.00E-59 3.00E-54 97.4025974 32.17

1.2.7.1 Halothermothrix orenii H 168 0.231005 9.00E-66 NF 66.66666667 20.42

2.3.3.10 Nostoc punctiforme PCC 73102 0.120439 6.00E-66 NF 79.90196078 16.32

2.6.1.19 Anabaena variabilis ATCC 29413 0.112158 1.00E-56 2.00E-19 97.99554566 20.61

2.6.1.19 Anabaena variabilis ATCC 29413 0.112158 1.00E-56 2.00E-29 99.33184855 20.61

4.1.1.15 Prochlorococcus marinus MIT 9313 0.122498 2.00E-22 NF 83.8362069 16.45

4.1.1.15 Prochlorococcus marinus MIT 9313 0.122498 3.00E-18 NF 83.40517241 14.11

4.1.3.4 Brevibacillus brevis NBRC 100599 0.235522 3.00E-48 NF 97.99331104 20.08

4.2.1.17 Anabaena variabilis ATCC 29413 0.112158 3.00E-45 NF 51.45067698 20.5

4.2.1.55 Brevibacillus brevis NBRC 100599 0.235522 2.00E-38 2.00E-22 98.08429119 33.33

6.2.1.16 Rhodospirillum rubrum ATCC 11170 0.247109 7.00E-23 NF 53.74251497 16.39

6.2.1.2 Pseudomonas fluorescens Pf 5 0.26 1.00E-11 3.00E-05 30.98591549 18.54

The species from which the annotation was picked, its phylogenetic distance with Synechococcus sp. PCC 7002, PSI-BLAST e-value for the

match, BLAST e-value for the match, if available, query coverage and identity

NF not found
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Query sequence identification

Using multiple sequence alignment-based phylogenetic

distance (CLUSTALW) as an evolutionary distance metric,

all the 1,332 species were ranked in the increasing order of

distance from the query organism oi [ O, which is to be

annotated. The closest organism clj which contains the

sequence hs corresponding to the enzyme of interest is

identified. (Note that the sequences used here are those

from UNIPROT.) This sequence (in the closest organism)

is the query sequence.

Candidate set

With hs as query sequence (described in the previous sub-

section), candidate sets Ci;j ¼ Ci;j;k

� �
8k ¼ 1; n were sear-

ched using PSI-BLAST (Altschul et al. 1997) against

NCBI’s non-redundant database. As parameters, e-value

threshold was set to 1E-5, and the maximum number of

alignments was set to 30,000. All sequences corresponding

to the query organism oi obtained in at most the fourth

iteration of PSI-BLAST were considered as potential

candidates.

Evidence score calculation

Four individual evidence scores are estimated as follows:

(i) Reverse BLAST-based pathway similarity score

(Sj,k,b): Sj;k;b ¼ 1
h

P

r

Pb;r

Pb

� �
8r ¼ 1; h where h is number

of homologs corresponding to a candidate sequence

participating in any of the expected pathways, and

where Pb,r and Pb, respectively, are the number of the

expected pathways in which the homolog r participates

and total number of possible pathways in which the

query enzyme ej participates. A cut-off of 1E-5 was

set for finding the homologs of the candidate

sequence.

(ii) Domain conservation score (Sj,k,d): Sj;k;d ¼ Dk=DE

where Dk and DE, respectively, are the number of

highly conserved domains in the kth candidate

sequence and the total number of highly conserved

domains (see Suppl Mat. 1) in the LMI for the query

enzyme ej. (Note that only CDD information was

included in this score.)

(iii) COG conservation score (Sj,k,c): Sj;k;c ¼ Ck=CE
where

Ck and CE, respectively, are the number of highly

conserved orthologous groups in the kth candidate

sequence and the total number of such groups (see

Suppl Mat. 1) in the query enzyme ej available in

LMI.

(iv) PFAM conservation score (Sj,k,f): Sj;k;f ¼ Fk=FE

where Fk and FE, respectively, are the number of

conserved families in the kth candidate sequence

k and the total number of such families (see Suppl

Mat. 1) in the query enzyme ej. Both these numbers

are estimated based on the information available in

LMI.

Weight vector estimation

Suppose a query enzyme ej is mapped by KEGG to gene ID

Ii,j
A which corresponds to sequence Ci,j,k. Using constrained

optimization (described in the next sub-section), weight

vector Ai,j corresponding to Ci,j,k is estimated. Should

multiple sequences be reported for a particular enzyme,

weights are obtained for each of these by considering them

independently. All enzymes ej for which the optimization

fails are excluded from further analyses. In these cases, the

optimization failed because it was unable to maximize

when two candidates had nearly same evidence scores and

only one of them was correct.

Optimization for estimation of weights

In order to obtain the optimal weights vector Ai,j for every

enzyme, a least square fitting problem is set up to maxi-

mize the overall score S0
j;k ¼ Ai;j � St

j;k;:where k represents

correct sequence with the constraints

(i) 0\Ai;j;l\1 8l ¼ b; c; d; f

(ii)
P

l¼b;c;d;f

Ai;j;l ¼ 1

If the score of a certain property is zero for all the

candidates, then that property is omitted from the optimi-

zation problem. It is assumed that there is only one correct

sequence. The optimization problem, implemented in

Matlab�, is developed as a standalone module.

Bootstrap method for annotation prediction

The bootstrap method is described in the following steps:

(a) Assume that the kth candidate is the correct candidate,

and all others as incorrect.

(b) Find the weight vector ai;j;k;: ¼ ai;j;k;b; ai;j;k;d; ai;j;k;c;
�

ai;j;k;f g that maximizes the overall score S0
j;k ¼ ai;j;k;: �

St
j;k;: (Eq. [1]) if the candidate sequence k were to be

the correct sequence.

(c) Repeat steps (a) and (b) for all candidate sequences

k = 1…n (bootstrap).

(d) Using the joint probability distribution Pr(A), find the

sequence kc that maximizes Pr(ai,j,k,:).
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(e) Assign the gene ID (Ii,j
A ) of this sequence Ci;j;kc

,

which is the sequence corresponding to kc to the

query enzyme ej. If multiple candidates satisfy

(d) above, then all candidates are assigned to the

query enzyme.
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