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Abstract: Series enzymatic cascades are ubiquitously found in signaling networks and act as key signal 

amplifiers. During signal transduction process, cell-to-cell variability or noise travels along with the 

signal and strongly affects the fitting response that the cells exhibit. Modulation of noise propagation 

through the enzymatic cascades can play a strong role in regulating cellular response. We find the 

conditions under which the noise propagation through the cascades is bounded. Using global sensitivity 

analysis, we quantified the dependence of these conditions on the system parameters and estimated the 

parameter range in which the system when operated will result in attenuation of noise propagation 

through the cascade. 
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1. INTRODUCTION 

Signal transduction through biological signalling 

networks often occurs via enzymatic cascades. Enzymatic 

cascades found ubiquitously in eukaryotic signalling 

networks (Widmann et al., 1999; Zhang and Dong, 2005) act 

as important signal amplifier for many cell-fate processes 

(Huang and Ferrell, 1996; Chang and Karin, 2001; Zhang and 

Dong, 2007, Dhanasekaran and Johnson, 2007) such as cell 

proliferation, apoptosis (Qi and Elion, 2005). Proteins 

involved in an enzymatic cascade such as MAPK cascade are 

therefore considered potential therapeutic targets for multiple 

diseases (Lee et al., 1999). 

Cells are constantly exposed to inevitable 

fluctuations or noise. Noise in a system can be classified into 

two types, viz., extrinsic and intrinsic noise, sources for 

which respectively are external and internal to the cells. 

These two types of noise can be correlated under certain 

conditions (Tanase-Nicola et al., 2006). Fluctuations have 

been observed during many cell-fate processes such as 

apoptosis (Spencer et al., 2009). Fluctuations or noise or cell-

to-cell variability flows along with signal into the signalling 

networks. Therefore, signalling networks have to process 

these fluctuations for the cell’s normal functioning and also 

to make faithful decisions when necessary (Raj and van 

Oudenaarden, 2008). Propagation of noise through signalling 

networks and its amplification is beneficial to cells in some 

situations (McDonnell and Ward, 2011; Paszek et al., 2010; 

Eldar and Elowitz, 2010) and deleterious in other cases 

(Barkai and Leibler, 2000).  

Enzymatic cascades being a crucial signal 

processing module in signalling networks, attenuation or 

amplification of noise by such cascades can have significant 

impact on the cellular response to a certain cue. It is therefore 

important to understand how the cascades modulate noise and 

the conditions under which they may attenuate or amplify 

noise. Enzymatic cascades are typically made up of building 

blocks such as single-step, series and parallel cascades 

(Kholodenko, 2006 and references therein). A few recent 

attempts have been made to characterize noise propagation in 

single-step (Detwiler et al., 2000; Shibata and Fujimoto, 

2005), two-step series (Dhananjaneyulu et al., 2012) and two-

substrate parallel (Viswanathan et al., 2008) cascades. Thattai 

and van Oudenaarden (2000) identified conditions that 

guarantee attenuation of noise propagation through 

transcriptional cascade assuming first-order degradation and 

that all species decay at the same rate. In this study, we 

consider a series enzymatic cascade and find the conditions 

under which the noise propagation through the enzymatic 

cascade is bounded. Using global sensitivity analysis, we 

unravel the feasible range of system parameters, operating 

within which will guarantee an upper bound for noise 

propagation through series enzymatic cascades.  

 

2. NOISE IN ENZYMATIC CASCADES 

2.1  Model 

Consider a series cascade consisting of N enzymatic 

phosphorylation-dephosphorylation steps (Fig. 1). The 

phosphorylation of the substrate iS  to 
*

i
S  in the ith cascade 

switches the substrate from inactive to active form and 

thereby facilitates signal transfer. On the contrary a 

dephosphorylation event switches the substrate from active to 

inactive form. While enzyme 
*

1i
S


, which is the 

phosphorylated substrate in the (i-1)th cascade acts as a kinase 

for the ith cascade, another enzyme Pi acts as phosphatase for 

the dephosphorylation event. The kinase for the 1st cascade 

is 0S .  
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Assuming that the concentration of Pi’s is not affected by the 

enzymatic cascades, the biochemical reactions involved in 

the ith cascade are 

1
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* * * *
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i i i i i ik
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where 
*

1i iS S   and 
*

i iS P  are the intermediates and jik , j = 1 to 

6 are the rate constants of the biochemical reactions 

corresponding to the ith cascade. Using the classical 

Michaelis-Menten formulation and Langevin technique (van 

Kampen, 1992), the stochastic differential equation (SDE) 

that capture the dynamics of ith phosphorylated substrate is 

 
 

* ** *
3 1 * *6 0

1**
21

( ) ( , ) ( )

t

i i i ii i i i

i i i i it
i ii i i

k x x xdx k x p
t R x x t

dt K xK x x
 






    

 

      (3) 

where 
* *, , t

i i i i ix x x x x  , respectively are the number of 

unphosphorylated, phosphorylated, and total ith substrate. 
* *

1( , )i i iR x x   and 0ip  are the reaction rate and total available 

number of ith phosphatase, respectively.  1 2 3 1/i i i iK k k k   

and  2 5 6 4/i i i iK k k k   are the Michaelis-Menten constants 

for the ith cascade. ( )i t  are the independent Gaussian white 

noise terms that have zero mean, that is, ( ) 0i t   and that 

satisfy  

' '( ) ( ) ( )i i it t A t t        (4) 

where 
'( )t t   is the Dirac delta function, 

 
 

* * *
3 1 6 0

**
21

t

i i i i i i i

i t
i ii i i

k x x x k x p
A

K xK x x


 

 
 is the strength of the 

fluctuations which quantifies the total variance of the 

increment in the ith phosphorylated substrate in the time 't t  

(Detwiler et al., 2000). The strength iA  is estimated at the 

mean number of species 
* *

1( , )i ix x   which are essentially the 

steady states of macroscopic rate equations, obtained by 

solving 

*

* *

1( , )i

i i i

dx
R x x

dt
     (5) 

 

2.2  Extrinsic and intrinsic noise 

 

Extrinsic and intrinsic noise are caused respectively 

by sources external and internal to the cells. The classical 

method of estimation of noise involves linearization of 

Langevin type stochastic differential equation (Eq. 3) around 

steady states. This method is simple and elegant as it is 

amenable to obtaining analytical expressions for noise in 

biological systems (Shibata and Fujimoto, 2005; Detwiler et 

al., 2000; Viswanathan et al., 2008; Elf and Ehrenberg, 

2003). Linearizing the model (Eq. 3) around steady states 
*

ix , 

i=1 to N of the macroscopic rate equations (Eq. 5) leads to 

 
*

1 * 1 *

1 ( )i

i i i i i i

d x
x g x t

dt
   




        (6) 

where, 
* , ,i i ix g , respectively represent the perturbation 

from the steady states for the ith phosphorylated substrate, 

relaxation time, gain for the ith enzymatic cascade. The 

relaxation time and gain for the ith cascade, respectively are 

given by 

   

*

1 3 1 1 6 2 0

2 2
* *

1 2( )

i i i i i i

i
t

i i i i i

k K x k K p

K x x K x
   

  
  (7a) 

and 
*

3

*

1

( )

( )

t

i i i i

i t

i i t

x x k
g

K x x

 


 
    (7b) 

Note that although upstream kinases *

jS , j = 1 to i-2 do not 

directly participate in the phosphorylation of iS , the 

fluctuations in all the upstream kinases propagate and affect 

noise in 
*

iS . 

 Noise in the phosphorylated substrate
*

iS  for the ith 

cascade can be obtained by solving Eq. (6) simultaneously 

for all i = 1 to N using Fourier transforms. Square of the 

appropriate perturbation, ensemble averaged, is used as a 

measure of noise (Detwiler et al., 2000). The total noise in ith 

substrate around the steady state is given by the sum of the 

intrinsic iI and extrinsic iE noise, assuming these two types 

of noise arise from independent sources. Assuming Poisson 

statistics for the birth and death processes (via a 

phosphorylation-dephosphorylation cycle) of the first kinase 

in the cascade 0S  with a corresponding time scale 0 , the 

extrinsic noise in the phosphorylated substrate of the ith 

cascade is given by 

2 2*

0 ,2
1 10

ii
i

i i j j

j j

x
E T g

x


 

  
   
  

     (8) 

where, 
2

0x  is the fluctuations around 0

tx , the total number 

of the kinase available for the first cascade and 

 
Figure 1: Schematic of an N step series enzymatic cascade. 

 

IFAC CAB 2013
December 16-18, 2013. Mumbai, India

96
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   and the corresponding intrinsic 

noise is given by 
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      (9) 

We assume that the extrinsic noise from all sources are 

represented in the fluctuations in the first kinase 
0S . 

 

3  ATTENUATION OF NOISE PROPAGATION 

3.1 Noise propagation is bounded 

 

We next look for conditions that ensure that the 

noise in the cascade will remain bounded. We follow the 

methodology proposed by Thattai and van Oudenaarden 

(2002) of expressing the noise in Fourier space as a recursive 

series and arriving at appropriate conditions for its 

boundedness. Using Eq. (4), the Fourier transformed total 

noise in the ith cascade can be written as  
2 2

* *

1 1( ) ( )i i i i i i i ix c a b x a b c           (10) 

where, 
2

2 21

i i

i

i

A
a



 



and 

2 2 2

2 2 2 21

i i i

i

i i

g g
b



   




 

 
 

Using Eq. (10) the total noise in Nth cascade can be written in 

the form of a recursive relation 
2

*

1 1 2 1 2 1 1 0( ) ...  ... N N N N N N N N Nx c a b a b b a b b c            

      (11) 

where, 
2

0 0 ( )c x    is the noise in the first kinase. 

Conditions that guarantee an upper bound for the recursive 

relation in Eq. (11) (Thattai and van Oudenaarden, 2002) are: 

1) sup( ) 1ib b       (12) 

2) sup( )ia a  exists    (13) 

Imposition of these conditions on Eq. (11) results in the 

inequality 
2

0(1 ...) N

Nc a b b b c        (14) 

As N  , Eq (14) reduces to 

/(1 )c a b        (15) 

Inverse Fourier transform of the RHS in Eq. (15) gives the 

upper bound on the noise in the cascade. 

Condition 1 (Eq. 12) is valid iff 1,ib i  . Since 

2 0  , for condition 1 (Eq. 12) to satisfy, it is sufficient if 

max( ) 1ig  . Next, it remains to be shown that condition 2 

(Eq. 13) is valid. 

Suppose if the parameters of ith and (i+1)th are same 

for some large i, then the steady state macroscopic rate 

equations (Eq. 5 with lhs set to zero) can be re-written in the 

form of a sequence 
* *

1( )i ix F x       (16) 

where 
*

1( )iF x   is a function in 
*

1ix  . Based on contraction 

mapping theorem, if 
*

1

*

1

( )
1i

i

dF x

dx





      (17) 

in some neighbourhood of 
*

1ix  , then 
*

1( )iF x   is a contraction 

and the sequence in Eq. (16) will converge to a unique fixed 

point for any set of parameters provided the same set is used 

for every cascade. Convergence of the sequence in Eq. (16) 

implies existence of an upper bound for  2 2 21i i i ia A     

as 
2

i iA  is a function of the steady state number of the 

phosphorylated substrates for the ith and (i-1)th cascades.  

Based on experimentally derived parameters (Table 

1) for a two-step MAPK enzymatic cascade in mammalian 

systems (Fujioka et al., 2006) and the relaxation time scales 

(Santos et al., 2007; Ruf et al., 2007), we seek to estimate the 

range of 
*

ix  for which F  is a contraction. The parameters 

obtained from literature were converted into numbers using 

the formula 
3

 
6

S A

S

d C N
N


                                                        (18) 

where, 
SN  is the number of molecules, 

SC is the molar 

concentration, d is the cell diameter and 
AN is Avogadro's 

constant. Cells were assumed to be spherical in shape with a 

diameter of 10 m. (Note that the cell diameter is in the same 

order of magnitude as that reported in Fujioka et al., 2006).  

 

Parameter Value 
t

ix  377 

0ip  32 

3ik  0.18 1s  

6ik  0.3 1s  

1iK  100 

2iK  22 

Table 1: Parameter values used in the simulations (Fujioka et 

al., 2006). 

In Fig. 2, we show the dependence of 
* *( )i id F x d x on 

*

ix . The range for 
*

ix  was chosen based on 

the typical constitutive number of kinase molecules present in 

a cell. A wide range of 
*

ix  exists in which F  will be a 

contraction (Fig. 2). This proves that for a certain set of 

parameters, an upper bound for the total noise in the cascade 

exists.  

 

3.2 Parametric dependence of noise propagation 

 In the previous section, the validity of the two conditions 

(Eq. 12 and 13) was shown by assuming that all system 

parameters are same for downstream cascades. However, the 

parameters are known to differ across cascades. Moreover, it 

has been shown that the quasi-steady state assumption 

involved in Michaelis-Menten formulation is valid only 
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under certain conditions imposed on the total number of 

molecules of a species in the cell (Segal, 1980). Numerical 

values for most of the parameters for larger cascades have not 

been measured experimentally and therefore are unavailable. 

 We consider a 5 step enzymatic cascade as an example 

and show that the noise estimates are bounded for a wide 

range of parameters. A global sensitivity analysis (GSA) 

(Jianfang et al., 2007; Dhananjaneyulu et al., 2012) using 

1000 sets of parameters generated randomly by Latin 

Hypercube Sampling technique (Imam and Conover, 1980) 

was performed to measure the extent of dependence of gain 

factor 5g and of 
* *

5 5( )d F x d x on various system parameters. 

Note that the gain factor in the 5th cascade and the derivative 

of the function in Eq. (17) depend on parameters of the 

upstream cascades. Therefore GSA was conducted by 

varying all 32 parameters associated with all 5 cascades 

considered. The samples for GSA were generated using 

uniform distribution for all the parameters with a deviation of 

20%  from the nominal value. We then found those sample 

sets with gain factor 
2

5 1g   that additionally satisfy the 

constraint in Eq. (17). From this set of samples, we then 

estimated the bound on these parameters that permit 
2

5 1g   

and Eq. (17). Note that the extrinsic (Eq. 8) and intrinsic (Eq. 

9) noise are strong functions of the gain factor. Figure 3 

shows the lower and upper bounds for the total number of 

substrate molecules of all 5 cascades.  

 Similar bounds for the remaining 27 parameters are 

presented in Appendix I.  The bounds obtained for various 

parameters are indeed in the range estimated experimentally 

for a 2-step enzymatic cascade (Fujioka et al., 2006). 

Moreover, in the parameter range where noise is bounded, we 

found that the cascade was operating in the ultrasensitive 

regime. This suggests that there may be many combinations 

of parameters for which attenuation of noise in series 

enzymatic cascades can be achieved while preserving the 

signal amplifying nature of the cascade.  

4. CONCLUSIONS 

Series enzymatic cascades are shown to have the 

ability to regulate noise propagation through them. In 

particular, using a combination of analytical conditions and 

global sensitivity analysis, we show that there exists a 

practical range of parameters for which an upper bound on 

the total noise can be obtained. The analytical conditions that 

mandate this upper bound was first arrived at without 

distinguishing the values of parameters across different 

cycles. Identification of the two conditions provided a 

rational constraint to characterize the ability of ultrasensitive 

MAPK cascades to attenuate noise propagation under feasible 

range of parameters. The hallmark of the method is that the 

analytical conditions provide pinpointed directions towards 

identifying the range of parameters where noise is bounded 

without considering the nature, that is, extent of monotonicity 

of noise propagation through the cascades. 

Using global sensitivity analysis and these 

conditions as a constraint, we find the range for all the system 

parameters for which total noise in a 5 step series in 

enzymatic cascade will be bounded. This range of parameters 

falls in the regime where the cascade exhibits ultrasensitivity. 

As a result, under certain conditions, MAPK enzymatic 

cascades can simultaneously perform dual function of signal 

amplification and of attenuation of noise to protect the 

fidelity of signal. This ability of the MAPK cascades 

identified in this study requires thorough experimental 

validation. 

*

*

( )i

i

dF x

dx

*

ix

*

*

( )
1i

i

dF x

dx


(number)
 

Figure 2: Dependence of 
* *( )i id F x d x on 

*

ix  showing that 

the function F  will be a contraction for a wide range of 

phosphorylated substrate concentrations. All parameters in 

the function F  were assigned values reported in Table 1. 
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Figure 3: Lower and upper bounds on the total number of 

substrates of all five cascades for which the noise will be 

bounded. Bounds for other parameters of the cascade are in 

Appendix I. 
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We argue that these findings can now pave way for 

performing pinpointed experiments to arrive at strategies for 

capitalizing on this dual functionality of enzymatic cascades 

to tune signalling networks towards useful functions. For 

instance, experimental methods are available for 

independently altering the total enzyme concentration (Santos 

et al., 2007) or inhibiting them (Favata et al., 1988; English 

and Cobb, 2002). These methods could now be used to 

regulate the concentrations of various kinases in the cascade 

accordingly in the range where attenuation of noise is 

desirable in activated signalling networks. On the other hand, 

similar regulation could be employed to operate under the 

regime where amplification of noise is desirable to achieve a 

certain function. 
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APPENDIX I: Lower and upper bounds for biochemical 

parameters 

 

Parameter Range Parameter Range 

11K  96.1 – 144 61k  0.2 – 0.4 1s  

12K  88 – 132 62k  0.2 – 0.4 1s  

13K  80 – 120 63k  0.2 – 0.4 1s  

14K  80.1 – 120 64k  0.2 – 0.4 1s  

15K  80.1 – 119.9 65k  0.2 – 0.4 1s  

21K  17.6 – 26.4 
10p  25.6 – 38.4 

22K  17.6 – 26.4 
20p  25.6 – 38.4 

23K  17.6 – 26.4 
30p  25.6 – 38.4 

24K  17.6 – 26.4 
40p  25.6 – 38.4 

25K  17.6 – 26.4 
50p  25.6 – 38.4 

31k  0.1 – 0.2 1s    80 – 119.9 s 

32k  0.2 – 0.3 1s  0x  37.8 – 56.7 

33k  0.1 – 0.2 1s    

34k  0.1 – 0.2 1s    

35k  0.1 – 0.2 1s    

Table AI.1: Lower and upper for biochemical parameters and 

upstream kinase relaxation time scale and total number. 
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