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Abstract Genetic regulatory networks respond dynami-

cally to perturbations in the intracellular and extracellular

environments of an organism. The GAL system in the yeast

Saccharomyces cerevisiae has evolved to utilize galactose

as an alternative carbon and energy source, in the absence

of glucose in the environment. We present a dynamic

model for GAL system in Saccharomyces cerevisiae,

which includes a novel mechanism for Gal3p activation

upon induction with galactose. The modification enables

the model to simulate the experimental observation that in

absence of galactose, oversynthesis of Gal3p can also

induce the GAL system. We then characterize the memory

of the GAL system as the domain of attraction of the steady

states.

Keywords Cellular memory � Domain of attraction �
ODE model � GAL system � Saccharomyces cerevisiae

Introduction

Biological memory can be defined as a sustained cellular

response to a transient stimulus (see Burrill and Silver 2010;

Ajo-Franklin et al. 2007). One way that cells exhibit mem-

ory is through transcriptional states, which involve popula-

tions of molecules regulating gene expression. If the

transcriptional response is bistable, a chemical state becomes

defined as on or off and, given certain parameters, this state

can be inherited through DNA replication and cell division.

A cell can thus produce a lasting memory of a biological

response (see Alon 1999; Monod and Jacob 1961). Such

transcriptional responses are useful to synthetic biologists as

well since much of the information processing in a cell is

through transcription so that the transcription process

enables a user with an useful set of characterized genetic

units such as promoters, activators, and inhibitors that can be

recombined to create new transcriptional circuits. The con-

struction of synthetic memory circuits will improve our

understanding of natural networks, further aiding the crea-

tion of useful, new biological tools. For example, a device

capable of remembering a biological experience might be

utilized in the long-term study of particular cells within a

heterogeneous population following a defined event or

applied in industry for the sustained production of desired

proteins after induction by a brief stimulus (see Burrill and

Silver 2010). In this paper, we show how the domain of

attraction analysis results (see, for example, Materassi and

Salapaka 2009) can be used to impart desirable memory to

synthetic biological constructs built using the galactose

regulatory system (the GAL system) of the yeast Saccha-

romyces cerevisiae, i.e., the Baker’s yeast. The domain of

attraction analysis technique itself is quite generic and may

be applied to analyze the memory, and robustness thereof, of

a variety of biological systems.
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Our model of the GAL system is built on the model

derived in Ruhela et al. (2004) by hypothesizing new

interactions in the galactose sensing mechanism so as to

capture the constitutive expression of the GAL system

when Gal3p is overexpressed. In addition, so as to be

consistent with the observed Gal2p mutant behaviour, it

includes non-facilitated diffusion of galactose as a galact-

ose sensing mechanism over and above the Gal2p mediated

transport mechanism. Our model includes the growth and

substrate consumption dynamics and, in addition, estab-

lishes a relationship between the dilution of the various

protein complexes and the nutritional status of the medium.

This model successfully predicts various mutant and

experimental scenarios such as effect of preculturing on the

memory of the cells (see Acar et al. 2005) and the effect of

regulation of permease on the sensitivity of the switch (see

Hawkins and Smolke 2006).

The GAL system of Saccharomyces cerevisiae

Naturally occurring networks of genes and proteins, espe-

cially in eukaryotic organisms, feature multiple complex

nested feedback loops. So, although gene expressions can

be affected at many levels including protein-DNA interac-

tions, protein-protein interactions, and protein-small mole-

cule interactions, it is difficult to characterize, a priori, the

systemic effect of these changes. An example of such net-

works is the galactose signalling pathway in the yeast

Saccharomyces cerevisiae. Despite extensive data on its

molecular interactions, an a priori prediction of its systemic

behavior remains challenging (see Acar et al. 2005; Biggar

and Crabtree 2001; Ideker et al. 2001). In the GAL regu-

latory network (see Fig. 1), the galactose signal propagates

through a four-stage signalling cascade. At the uppermost

stage is Gal2p, which imports extracellular galactose into

the cell. Subsequently, intracellular galactose binds to and

activates Gal3p (see Biggar and Crabtree 2001; Ideker et al.

2001). At the third stage of this cascade, the activated Gal3p

binds to and sequesters Gal80p in the cytoplasm, depleting

Gal80p from the nucleus. The transcriptional activator

Gal4p, which is constitutively bound to promoters of the

GAL genes, is then released from the inhibitory action of

Gal80p and activates expression of genes at the output of

the cascade, including GAL1, GAL2, GAL3 and GAL80.

Because an increase in Gal2p and Gal3p concentration

results in enhanced transcriptional activity, these two pro-

teins each enforce a positive feedback loop whereas Gal80p

enforces a negative feedback loop (see Acar et al. 2005).

Yeast metabolizes galactose using the enzymes of the

well known Leloir pathway (Johnston 1987). When yeast is

grown in the absence of galactose, the genes which encode

the enzymes of the Leloir pathway are found to be

transcriptionally inert (Platt et al. 2000). The enzymes in

the Leloir pathway are regulated by a well-characterized

genetic switch known as the GAL regulatory system.

However, induction and transcription of GAL genes occur

if galactose is the sole carbon source. On the other hand,

GAL genes are repressed during growth in a medium

containing glucose (see Johnston et al. 1994; Dong and

Dickinson 1997). The GAL system is a complex genetic

network with numerous interactions. The induction of GAL

genes in Saccharomyces cerevisiae is controlled by the

interplay between three regulatory proteins: a transcrip-

tional activator Gal4p, a transcriptional repressor Gal80p,

and an inducer Gal3p (Lohr et al. 1995). The activator

Gal4p activates the GAL structural genes by recognizing

and binding to the specific upstream activation sequence of

the GAL structural genes (UASG) through its N-terminal

DNA-binding domain. In the absence of galactose, Gal80p

inhibits the function of Gal4p by binding to its C-terminal

transcription activation domain (Giniger et al. 1985). The

above interactions are shown schematically in Fig. 2.

The GAL gene family in Saccharomyces cerevisiae

consists of three regulatory genes and five structural genes

which enables it to use galactose as the carbon source (Lohr

et al. 1995). The GAL network, shown in Fig. 2, has three

genes MEL1, GAL3, and GAL80 with one binding site

(referred to as D1 in Fig. 2) for activation by Gal4p and seven

genes GAL2, GAL1, GAL7, GAL10, MTH1, PCL10, and

FUR10 with two binding sites (referred to as D2 in Fig. 2) for

the activator protein Gal4p. The activator Gal4p binds to the

upstream activation sequences (UASG) of these genes as a

homodimer and activates the transcription of the genes. The

Gal3p*

Gal3p

Gal80p

Gal80p Gal4p

Gal4p

GAL80

GAL3

- feedback

+   feedback

Galactose

80GALP

3GALP

Nucleus

Cytoplasm

Fig. 1 The GAL regulatory system: The external galactose signal

controls the transcriptional activity of the GAL genes. Galactose can

shuttle between the cytoplasm and the nucleus. The galactose bound

stage of the protein Gal3p is Gal3p*. The pointed arrows indicate

activation whereas the blunt arrows indicate inhibition
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repressor protein, Gal80p binds to the gene-Gal4p dimer

complex and prevents it from recruiting RNA polymerase II

mediator complex. Once galactose is inside the cell, the

inducer protein Gal3p interacts with the repressor Gal80p in

a galactose and ATP dependent manner in the cytoplasm to

relieve the Gal80p inhibition (see Zenke et al. 1996; Platt

and Reece 1998). The inducer Gal3p appears to require

galactose and ATP so as to adopt a conformation that allows

interaction with Gal80p to form a stable complex of Gal3p-

Gal80p (Yano and Fukasawa 2008). The cytoplasmic inter-

action between Gal3p and Gal80p results in sequestration of

Gal80p in the cytoplasm from the nucleus. The net result of

this interaction is that inhibition of the switch by Gal80p is

relieved and transcription of the GAL genes proceeds. These

interactions are represented in form of a dynamic model for

GAL regulatory network as discussed below.

System description

The performance of the GAL switch is observed as the

fraction of the gene bound to the activator over the total

available gene concentration. The fractional transcriptional

levels for D1 and D2, viz., f1 and f2 are

f1 ¼
½D1� Gal4p2�
½D1t�

;

f2 ¼
½D2� Gal4p2� þ ½D2� Gal4p2 � Gal4p2�

½D2t�
;

where [D1-Gal4p2] represents the interaction of dimer Gal4p

with DNA for genes with one binding site, [D2 - Gal4p2]

represents the interaction of dimer Gal4p with DNA for genes

with two binding sites, [D1t] is the total operator

concentration of DNA with one binding site for Gal4p, and

[D2t] is the total available operator concentration of genes

with two binding sites for Gal4p. The fractional translation for

both one and two binding sites is given by f1p = f1
0.5 and

f2p = f2
0.5, where f1p and f2p represent the fractional translation

of genes with one and two binding sites, respectively. The

exponent 0.5 represents the co-response coefficient relating

the fractional transcription to fractional translation and is

determined by microarray data (Ideker et al. 2001). Presence

of glucose turns off the GAL system by repressing the

synthesis of Gal4p, which has been modelled by a Michaelis-

Menten type relationship as follows,

RGal4p ¼ Kg½Gal4pmax�
Ki

Ki þ Gluext
;

Fig. 2 Schematic representation of protein-protein and DNA-protein

interactions in the cytoplasm and nucleus for the GAL genetic switch

in presence of galactose. D1 and D2, represent genes with one and

two binding sites, respectively. The numbers in circles namely 4, 80

and 3 represent Gal4p, Gal80p and Gal3p/activated Gal3p, respec-

tively. The interactions in the nucleus include Gal4p dimerization,

Gal80p dimerization, Gal4p dimer-DNA interaction with genes

having one and two binding sites, Gal80p dimer-Gal4p dimer

interaction and interaction of Gal80p dimer to Gal4p dimer bound

to DNA. The interaction in the cytoplasm includes dimerization of

Gal80p and binding of Gal80p to activated Gal3p. Gal80p shuttles

between cytoplasm and nucleus to relieve its inhibition on Gal4p
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where RGal4p, Ki and Kg represent the synthesis rates of

Gal4p, half-saturation constant and kinetic rate constant,

respectively. The synthesis of the other two regulatory

proteins, Gal3p and Gal80p depends on the autoregulation

of genes with one binding site. Therefore,

RGal3p ¼ K3 f1pD1t and RGal80p ¼ K80 f1pD1t;

where RGal3p, RGal80p and K3, K80 represent the synthesis

rate of Gal3p and Gal80p and the respective translational

kinetic constants. In the previous model by Ruhela et al.

(2004), it was assumed that the intracellular galactose (Galint)

activates Gal3p, which then interacts with Gal80p in the

cytoplasm to give a stable complex of Gal3p-Gal80p-Galint,

thereby eliminating the possibility of induction of the GAL

system in absence of galactose. In the dynamic model pre-

sented here, Gal3p interacts with internal galactose to form a

complex Gal3p-Galint. The repressor Gal80p then interacts

with Gal3p-Galint by a substitution mechanism wherein a new

stable complex Gal3p-Gal80p is formed while freeing up

Galint. The above interactions may be represented as follows,

Additionally, Gal3p can independently complex with

Gal80p although with a significantly enhanced dissociation

constant as follows (see Bhat and Hopper 1992):

Gal3p þ Gal80p $ Gal3p � Gal80p: ð1Þ

Constants Ki represent the forward rate constants of the

appropriate interaction while K-i represents the corre-

sponding backward rate constants. The above interaction is

responsible for the induction of the GAL switch even in

absence of galactose. The overall growth rate l can be

written as l¼: lGal þ lGlu; where

lGal ¼ lGalmax

Galint

K0 þ Galint
; lGlu ¼ lGlumax

Gluint

KGlu þ Gluint
:

ð2Þ

The galactose in the medium has been modelled as

dGalext

dt
¼ �KpGal2p

Galext

Ki þ Galext
X

� KaGal2p
Galext

K5 þ Galext
X; ð3Þ

where the first term represents the Gal2p regulated uptake

of galactose while the second term quantifies the diffusion

of galactose into the cell by a non-facilitated transport

mechanism. The availability of internal galactose, Galint is

governed by the following equation,

The third and fourth terms above represent the inde-

pendent weak interaction between Gal3p and Galint while

the fifth and sixth terms represent the Galint assisted

binding of Gal3p with Gal80p. The last term represents the

growth related consumption of galactose. The uptake of

glucose is modelled as follows,

dGlu

dt
¼ �1

Y
lGluX:

The growth is modeled as _X ¼ lX:
The complete model consists of 25 differential equation

and three algebraic equations, which are solved by MAT-

LAB 6.5 of MathWorks Inc. All the model parameters are

taken from Ruhela et al. (2004). The equilibrium dissocia-

tion constant K4 corresponds to the interaction primarily

responsible for Gal80p sequestration and has the same value

as in Ruhela et al. (2004). The newly introduced dissociation

equilibrium constants Km and K5 correspond to interactions

between Gal3p and internal galactose and between the direct

but weak interaction between Gal3p and Gal80p and their

values are fixed based on a sensitivity study. Dynamic molar

balance equations were written for interactions shown in

Fig. 1 namely, protein-protein interactions, DNA-protein

interactions and protein-substrate interactions. The interac-

tions are adopted from Ruhela et al. (2004) while the pro-

posed Gal3p-Gal80p interactions are discussed in the main

text. The model parameter values are given in Ruhela et al.

(2004). Few parameter values were modified to fit the model

calculations. The complete dynamic model equations and

notations used are presented below.

Table 1 Physical meaning of state variables

State-variable Meaning

x1 [Gal4p]

x2 [Gal4p2]

x3 [D1]

x4 [D2]

x5 [D1 - Gal4p2]

x6 [D2 - Gal4p2]

x7 [D2 - Gal4p2 - Gal4p2]

x8 [Gal80pn]

x9 [Gal80pn2]

x10 [Gal4p2 - Gal80pn2]

x11 [D1 - Gal4p2 - Gal80pn2]

x12 [D2 - Gal4p2 - Gal80pn2]

x13 [D2 - Gal4p2 - Gal80pn2 - Gal4p2]

x14 [D2 - Gal4p2 - Gal80pn2 - Gal4p2 - Gal80pn2]

x15 [Gal80pc]

x16 [Gal80pc2]

x17 [Gal3p]

x18 [Gal80pc - Gal3p]

x19 [Gal3p -Galint]

x20 [Gal2p]

x21 [Galint]

x22 [Mel1]

x23 [X]

x24 [Galext]

x25 [Gluext]
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_x1 ¼ k1K1x2 � k1x2
1 þ

KgKi

Ki þ Gluext
� lx1

_x2 ¼ 0:5k1x2
1 � 0:5k1K1x2 þ kdKdx5 � kdx2x3

þ kdKdx6 � k2x2x4 þ kdKdx7 � mkdx2x6

þ k3K3x10 � k3x2x9 � lx2

_x3 ¼ kdKdx5 � kdx2x3

_x4 ¼ kdKdx6 � kdx2x4

_x5 ¼ kdx2x3 � kdKdx5 þ k3K3x11 � k3x5x9

_x6 ¼ kdx2x4 � kdKdx6 þ kdKdx7 � mkdx2x6

þ k3K3x12 � k3x6x9

_x7 ¼ mkdx2x6 � kdKdx7 þ k3K3x13 � k3x7x9

_x8 ¼ k2K2x9 � k2x2
8 þ

k

K
x15 � kx8 � lx8

_x9 ¼ 0:5k2x2
8 � 0:5k2K2x9 þ k3K3x10 � k3x2x9

þ k3K3x11 � k3x5x9 þ k3K3x12 � k3x6x9 þ k3K3x13

� k3x7x9 þ k3K3x14 � k3x9x13 � lx9

_x10 ¼ k3x2x9 � k3K3x10 � lx10

_x11 ¼ k3x5x9 � k3K3x11

_x12 ¼ k3x6x9 � k3K3x12

_x13 ¼ k3x7x9 � k3K3x13 þ k3K3x14 � k3x9x13

_x14 ¼ k3x9x13 � k3K3x14

_x15 ¼ k2K2x16 � k2x2
15 þ kx8 �

k

K
x15 þ k4K4x18

� k4x15x19 þ KtD1tf1p � lx15

_x16 ¼ 0:5k2x2
15 � 0:5k2K2x16 � lx16

_x17 ¼ km1x19 � kmx17 þ KtD1tf1p � lx17

_x18 ¼ k4x15x19 � k4K4x18 � lx18

_x19 ¼ k4K4x18 � k4x15x19 þ kmx17 � km1x19 � lx19

_x20 ¼ Kpf2pD2t � lx20

_x21 ¼ km1x19 � kmx17x21 þ k4x15x19

� k4K4x18x21 þ Kpx20

x24

ki þ x24

þ ka
x24

ks þ x24

� l
YX=Gal

� lx21

_x22 ¼ kmef1pD1t � lx22

_x23 ¼ lx23

_x24 ¼ �Kpx20

x24

ki þ x24

x23 � ka
x24

ks þ x24

x23

_x25 ¼ �
1

YX=Gal

lGlux23

l ¼ Galint

K0 þ Galint
lGalmax

þ Gluext

KGlu þ Gluext
lGluext

f1p ¼ x0:5
5

f2p ¼ x6 þ x7ð Þ0:5:

Stability and multipliers

We now formally introduce the notation and the notion of

stability; a detailed description of these notions is available

in Willems (1971) and Desoer and Vidyasagar (1975). Let

ðRþÞR denote the set of all (nonnegative) real numbers.

Let ð�Þ0 (or ð�ÞT ) denote the transpose of a vector or a matrix

ð�Þ: Let the inner-product hx; yi¼:
R1
�1 yTðtÞxðtÞdt and let

the norm kxk¼:
ffiffiffiffiffiffiffiffiffiffiffi
x; xh i

p
: The vector space L2 comprises all

signals x for which kxk\1: The norm

kzk1¼
: R1
�1 jzðtÞj dt: The Dirac delta function is denoted

dð�Þ: The time-truncation operator is denoted Ps. In sta-

bility analysis, a given system S is often decomposed into

two interconnected subsystems—a linear time-invariant

(LTI) subsystem S1 in the feedforward path and an

otherwise subsystem S2 in the feedback path. Stability of S
is then deduced if there exists a quadratic functional that

separates the graph of S1 from the inverse graph of S2 (see

Safonov 1980). Certain classes of convolution operators,

also called stability multipliers (see Safonov and Kulkarni

2000), specify such functionals. The larger the class of the

stability multipliers, the lower the conservatism in the

stability analysis (Megretski and Rantzer 1997). Stability

multipliers for memoryless monotone nonlinearities are the

Zames-Falb multipliers (1968) and their limiting cases

include Popov multipliers (1962) and RL/RC multipliers

(Cho and Narendra 1968). A key property of such a mul-

tiplier M is that it preserves the positivity of a memoryless

monotone nonlinearity N in the sense that the positivity of

N implies the positivity of MN. Well known examples of

positivity preserving multipliers include the Popov multi-

pliers and the Zames-Falb multipliers (see Safonov and

Kulkarni 2000; Zames and Falb 1968; Willems 1971,

Chapter 3).

Definition 1 A system S mapping u 2 L2 into y 2 L2 is

said to be finite gain stable if there exists c C 0 such that

kSðuÞk� ckuk for all u 2 L2:

Definition 2 The class NM of monotone nonlinearities

consists of all memoryless mappings N : Rn 7!R
n such that:

(i) N is the gradient of a convex real-valued function, and

(ii) there exists C 2 R
þ s.t. kNðxÞk�Ckxk 8x 2 L2: The

class N¼: fN 2 NMjNð0Þ ¼ 0g:

Definition 3 The class MZF of Zames-Falb multipliers

denotes the class of convolution operators, either continu-

ous-time or discrete-time, such that the impulse response of

an M 2MZF is of the form

mð�Þ ¼ g dð�Þ þ hð�Þ with khk1\g; hðtÞ� 0 8t;

where g; hð�Þ 2 R:
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Domain of attraction results to characterize

the steady states

The ODE model derived in the previous section is of the

form SL : _x ¼ Axþ UðxÞ þ Bu; where A is a real-valued

matrix of suitable size, U is a quadratic nonlinearity, and

Bu is the forcing input. Note that a quadratic nonlinearity

UðxÞ can be represented as UðxÞ ¼ xT Nx where N ¼
½N1 N2 . . . N25�T ; where Ni are real-valued matrices of

suitable size. Literature on the stability analysis of such

systems is sparse although sufficiency conditions have been

established in Koditschek and Narendra (1983). In general,

L2 stability cannot be expected of multistable models. We

now first establish sufficiency conditions under which a

polytope P¼: faix� 1 j i ¼ 1; 2. . .; nþ 1g belongs to the

domain of attraction of the equilibrium point x = 0 given

that the state feedback u = Kx is used to control the gal-

actose entering the cell. Let mi denote the vertices of P: The

following result is well known (see Khalil 1992)).

Theorem 1 Given a closed set E � R
n such that the

equilibrium point xo is contained in E, suppose the fol-

lowing conditions are satisfied: (i) E is an invariant set of

the given system; and, (ii) a Lyapunov function V(x) exists

such that V(x) is positive definite on E and, further, _VðxÞ is

negative definite along the trajectories of the given system

in E. Then, E is an estimate of the domain of attraction of

xo.

The above theorem can be specialized to our system as

follows.

Theorem 2 P is in the domain of attraction of an equi-

librium point x = 0 of SG if there exist scalars c 2
ð0; 1Þ; c [ 0; a symmetric positive definite matrix

P 2 R
n�n; and a matrix K such that

1 caT
i Pc

ðcaT
i PcÞT Pc

� �

� 0; and
1 mT

i

mi cP

� �

� 0; i

¼ 1; 2; . . .; 25; ð4Þ

Herm cðAþ BKÞT Pþ

NT
1 mi

NT
2 mi

..

.

NT
5 mi

2

6
6
6
4

3

7
7
7
5

P

0

B
B
B
@

1

C
C
C
A

\0; i

¼ 1; 2; . . .; 25; ð5Þ

where Hermð�Þ denotes the Hermitian of ð�Þ: The desired

controller is given by u = Kx.

Proof Our proof uses the results derived in Amato et al.

(2007, 2009), and can be sketched as follows. Let us

consider the function V(x) = xT P-1 x as the candidate

Lyapunov function. Since P is a symmetric positive defi-

nite matrix, V(x) is positive definite. It needs to be shown

that _VðxÞ is negative definite along the system trajectories

on P: Observe that the inequality Eq. 5 holds not only for

the vertices mi but for all points x inside the scaled polytope

eP¼: 1=cP since the function on the left-hand side is an

affine function of x. It can be observed that the left hand

side of this inequality is _VðxÞ along the trajectories of SG

so that _VðxÞ is indeed a Lyapunov function for SG: We next

show that the polytope eP contains a level curve of the

chosen Lyapunov function. It is well known that the

ellipsoid E¼: fx 2 R
25 j xT P�1x� cg contains the polytope

P (see Boyd et al. 1994, pp. 69). Now, the polytope eP can

be expressed as eP ¼ fx 2 R
25jcaix� 1 i ¼ 1; 2; . . .; 25g:

Now, using the Schur complement, the condition (4) can be

re-written as c (ai
T cP ai) c B 1 V i. Hence, by Boyd et al.

(1994, pp. 70), it follows that eP contains E: Hence V(x) is a

Lyapunov function on E: Further, the boundary of E is a

level curve of V(x) whence E is an invariant set. Hence, by

Theorem 1, E 	 P is an estimate of the domain of attrac-

tion. Hence the proof. h

Remark 1 Theorem 2 establishes a lower bound P on the

domain of attraction of an equilibrium point and also yields

a full-state feedback controller u = Kx which asymptoti-

cally drives a state within P to the equilibrium point. The

result applies only for the special case wherein the equi-

librium point xo is the origin, and can be extended to cover

the case of other equilibrium points.

Remark 2 The domains of attraction of the equilibrium

points have been experimentally reported as the regions of

persistent and non-persistent memory in Acar et al. (2005).

Theorem 2 characterizes the domain of attraction for the

special case in which a linear time-invariant feedback from

the expressed genes is used to control the input galactose.

If the objective is to control only GAL4 expression, as

opposed to controlling all individual gene expression lev-

els, the classical multiplier theory might provide a wide

range of linear and nonlinear stabilizing controllers. We

have experimentally observed that the GAL4 expression

exhibits an aberration of monotone nonlinearity when the

cell is excited with galactose; the expression is further

inhibited in the presence of glucose. Some experimental

set-ups require that the galactose be injected in a cell such

that the GAL4 expression is regulated to a desired value.

For these applications, a class of stabilizing controllers may

be obtained as follows using the framework of Rantzer

(2001). Let N denote this nonlinearity, and let D denote the

dip in the nonlinearity curve. Let C be the controller to be

designed. Then, feedback system RR of interest is as fol-

lows: y1 = N(u1), u1 = C(e1), e1 = r - y1. Using

Theorem 1 of Rantzer (2001), the following result is

readily established.
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Lemma 1 Let MR denote the class of convolution

operators, either continuous-time or discrete-time, such

that the impulse response of an M 2MR is of the form

mð�Þ ¼ ðgþ DÞ dð�Þ þ hð�Þ with khk1\g; hðtÞ� 0 8t;

where g; hð�Þ 2 R: Then RR is finite-gain stable if C 2MR:

Proof The proof follows as a ready consequence of

[Rantzer 2001, Theorem 1]. This controller can be used to

control the expression of GAL4. However, it cannot control

the cellular memory since it cannot regulate the expression

of other genes. h

Conclusions

We have derived an ODE model of the GAL regulatory

network of Saccharomyces cerevisiae. We have shown that

although the ODE model of Smidtas et al. (2006) gives an

elegant explanation of the transient response of a subset of

this network, it does not exhibit bistability, a key property

of the GAL regulatory network. By including more

chemical reactions in the approach of Smidtas et al. (2006),

we have proposed a 25 state variable quadratic model of

the GAL regulatory network. For this model, we have

established sufficiency conditions for the domain of

attraction of an equilibrium point for the special case of

full-state feedback control. This result is useful in charac-

terizing the persistence of cellular memory. Unlike the

existing literature on GAL regulatory systems, our

approach is not limited to 2 state-variables or 2 parameters;

our LMI conditions scale well to address more state-vari-

ables and parameters, as is the case in the GAL regulatory

system, and can be easily implemented in software.
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