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Abstract

Kinases serve crucial roles in many cellular signaling pathways that process and transfer
information. When signaling kinases phosphorylate two targets, these can serve as branch
points that distribute information among two pathways. Responses to stimuli transmitted by
activated kinases show high levels of cell-to-cell variation that influence cellular function. We
ask how fluctuations around a steady state, due to kinase fluctuations and intrinsic noise, are
distributed between two reactions with substrates phosphorylated by a shared kinase. We
develop the formalism to answer this question and, for a realistic set of biological constants,
we illustrate various features of fluctuations and relaxation times to a steady state. We find that
the steady-state response determines the size and range in enzyme concentration of
phosphorylated substrate fluctuations, and that the choice of an operating point can have a
large impact on how shared kinase noise is distributed among two available pathways.

1. Introduction

Signaling pathways in stimulated cells are frequently activated
from a common source. Activation typically occurs through
substrate phosphorylation by a kinase. When two substrates,
leading to branching pathways, share an upstream kinase, they
are connected, as the phosphorylation of one substrate depends
on the concentration of one other substrate. Pathway branching
is an important aspect of network topology, that plays a crucial
role in cellular response to external stimulation. Examples are
numerous: many immune cells process the information flow
triggered by a receptor activation via PI3K kinase isoforms,
such as p110δ and p100γ , which can simultaneously regulate
two or more downstream proteins, each of which leads to
different cellular outcomes [1]; in the JAK/STAT pathway
stimulated by type I interferon, there is co-regulation of the
phosphorylation of STAT1 and STAT2 by phosphorylated
Tyk2 and phosphorylated Jak1 [2]. These are instances of
known pathways originating from a common kinase. When
the network topology is unknown, it is sometimes possible
to infer the presence of hidden pathways. The existence
of an unknown pathway was surmised in [3] from single
cell ERKp responses to gonadotropin stimulated cells. The

uncovering of a shared kinase of two known pathways was
accomplished in [4], where the authors showed that for cells
stimulated by the proinflammatory cytokine interleukin-1 (IL-
1), phosphorylated TAK1 (MAP3Kp), known to be the kinase
leading to activation of AP-1 through the JNK pathway, was
at the same time the kinase responsible for NFκB activation
through NIK and IKK.

In this work, motivated by these biological examples, we
investigate the topology of two enzymatic reactions driven by
the same kinase. The parallel system of the two enzymatic
reactions either stands alone, or can be considered as the first
stage of multistage signaling cascades, such as the Ras-Raf
stage of a MAPK cascade. Cellular processes are subject to
fluctuations that arise either due to intrinsic noise resulting
from the stochasticity of chemical reactions or extrinsic noise
due to cell-to-cell variability from other sources such as
differences in the number of reactants. These fluctuations
determine how faithfully an external signal is transduced, from
stimulation at the cellular membrane down to transcription
factor activation. Noisiness of signal transduction is thus
an issue of great interest. In this context it is imperative
to investigate how initial fluctuations in some kinase right
after cell stimulation distribute themselves between the two
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phosphorylated substrates driven by that same kinase, and
what are the characteristics of the two enzymatic reactions
that determine which pathway inherits what amount of input
fluctuations. Previous work has dealt with noise transduction
in single enzymatic reactions [5, 6] or with noise propagation
through multiple stages in a signaling cascade [7, 5]. Here we
give a complete treatment of small kinase fluctuations away
from the steady state for a parallel system of two enzymatic
reactions driven by a common kinase. Our discussion of
distributed noise should be of interest to the fast evolving
field of synthetic biological circuits, where recently [8] a
kinase signaling pathway was modulated through engineered
scaffold protein interactions. We highlight how the steady-
state response determines the characteristics of fluctuations
of the phosphorylated substrate due to enzyme fluctuations.
We also point out that in the many cases where steady-state
responses of the two substrates phosphorylated by the same
kinase differ, the choice of the operating point, defined as
the amount of available kinase, determines the division of
kinase fluctuations between the two phosphorylated substrates.
Moreover, even when the biological system is studied at one
operating point only, the measurement of a gain factor across
a cell population allows one to infer how noise propagates
through two signaling pathways activated by the same kinase.

Our paper is organized as follows. In section 2 we present
the basic equations for fluctuations around a steady state in the
parallel system of figure 1 whose implications are discussed in
the rest of the paper. Section 3 contains a detailed evaluation
of the different sources of noise, intrinsic and extrinsic, of
which a few salient features concerning relaxation times to
the steady state are discussed in section 4. Section 5 gives
the ingredients for numerical calculations based on numbers
derived from the early stages of MAP kinase cascades. We
use these parameter values to illustrate some of our results
on the values of time constants describing excursions from
the steady state, on kinase noise contributions to enzymatic
reaction fluctuations, both for a parallel system of shared
kinase and for a single reaction, and on the operating point
dependence of the distribution of enzymatic noise. Section 7
contains a summary and conclusion.

2. Methods

2.1. Model and equations

In figure 1(a) we show the diagram of the parallel motif we
study which consists of the two substrates X and Y driven by a
common kinase E. The fact that activation of X and Y is due to
a shared kinase, entails a form of cross-talk between the two
pathways: the amount of activation in one enzymatic system
depends explicitly on the amount of substrate of the second
parallel reaction. We wish to determine the impact of this
cross-talk on various properties of the system; in particular, on
the amount of noise in the linear response of the two pathways
due to noise in the input when the system is perturbed away
from the steady state. Our methodology follows that used
by Detwiler et al [5] in their study of retinal transduction
as an engineering system. We represent the activation by

(a) (b)

Figure 1. (a) Schematic of reactions for the phosphorylation of two
substrates X and Y by a common kinase E and dephosphorylation by
different phosphatases P1 and P2. (b) Schematic for a single
substrate X of the phosphorylation by kinase E and
dephosphorylation by P.

E (see figure 1(a)) of X → X� and Y → Y � and the
corresponding phosphatase action X� → X and Y � → Y

through respectively P1 and P2 by the usual Michaelis–Menten
equations, namely

dX�/dt = Q+X − Q−X� (1)

dY �/dt = R+Y − R−Y �, (2)

where

Q+ = k3K1
−1Et

1 + K1
−1X + K2

−1Y
, (3)

Q− = k6K̄
−1
1 P1

t

1 + K̄1
−1

X�
(4)

R+ = a3K2
−1Et

1 + K1
−1X + K2

−1Y
, (5)

R− = a6K̄
−1
2 P2

t

1 + K̄2
−1

Y �
. (6)

Here X + X� = Xt , and Y + Y � = Y t ,Xt and Y t represent
the initial amounts of unactivated molecules of X and Y. Et

represents the available amount of enzyme E,P1
t and P2

t

the initial amounts of phosphatases P1 and P2, respectively.
The K and K̄ are the respective Michaelis–Menten constants.
Note that the two equations are coupled, since the activation
of X depends on Y and that of Y on X. Thus a common source
of kinase provides an explicit connection between the two
systems. Its origin lies in the conservation of the original
amount of kinase, which can either be free or bound in a
complex with either substrate X or substrate Y.

Equations (1) and (2) can be formally derived from the set
of chemical reactions

X + E
k2�
k1

[XE]
k3→ X� + E (7)

Y + E
a2�
a1

[YE]
a3→ Y � + E (8)

for kinase activity and
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X� + P1
k5�
k4

[X�P1]
k6→ X + P1 (9)

Y � + P2
a5�
a4

[Y �P2]
a6→ Y + P2 (10)

for the phosphatases. In these reactions the k and a are
reaction rate constants. The associated Michaelis–Menten
factors are K1 = (k2 + k3)/k1; K̄1 = (k5 + k6)/k4;K2 =
(a2 + a3)/a1; K̄2 = (a5 + a6)/a4.

Equations (1) and (2) describe these chemical reactions
if it is assumed that the intermediate complexes such as
[XE] have reached the quasi-steady state on long time
scales. Whether the assumptions are justified would have
to be decided on a case-by-case basis. It is therefore
preferable to look at equations (1) and (2) as effective
parametrizations of the dynamics of response for the system
under consideration. Mathematical biologists have studied
the quasi-steady-state assumption for a long time [9], for an
isolated system or a parallel system [10–12], but without
the two dephosphorylation reactions. The issue of the
applicability of the quasi-steady-state approximation is of
much more serious concern for later stages in vertical
cascades than for the parallel first stage or stand-alone system
investigated in this work. The reason is that in a vertical
cascade the activated substrate of one stage serves as the
kinase for the subsequent stage. For the latter case steady-
state approximations have been developed which go beyond
the one considered here. These are reviewed and discussed in
[13].

For some signaling events activation is a two-step process
where a second phosphorylation follows the first one. In such
a case equations (1) and (2) only apply in so far as they can
be considered as providing an effective description of such a
system.

2.2. Sources of noise

In this section we present the results of our analysis of noise
around the steady state for two enzymatic reactions with shared
kinase and the expression for the gain factor. Some of the
details are deferred to the appendix. These expressions form
the basis for the numerical results and their discussion and
interpretation presented in the subsequent section. For the
purpose of comparison we also summarize some results for a
single reaction [5] in a subsection.

2.2.1. Shared kinase enzymatic reactions. We study the
behavior of fluctuations δX∗ and δY ∗ assuming [5] that
the system has reached the steady state or the quasi-steady
state, where the rate of time evolution is zero or small. In
this state, the concentrations of X� and Y � assume values
denoted respectively by X̄� and Ȳ �, which are solutions of
equations (1) and (2) with the left-hand sides set equal to zero.

Small deviations around these steady-state values are
defined by

X�(t) = X̄� + δX�(t) (11)

Y �(t) = Ȳ � + δY �(t). (12)

Fluctuations arise from two sources

(1) fluctuations in the amount of kinase Et which activates X
and Y.

(2) fluctuations due to the random nature of the two chemical
reactions.

The latter can be taken into account through additive noise
terms η1(t) and η2(t) in respectively equations (1) and (2) if the
number of molecules is large. These uncorrelated noise terms
are of ‘white noise’ type and characterized by the following
conditions on their average and correlation, once it is assumed
that the processes of equations (1) and (2) can be approximated
by Poisson distributions [5]

〈η1(t)〉 = 〈η2(t)〉 = 0 (13)

〈η1(t)η1(t
′)〉 = (Q̄+X̄ + Q̄−X̄�)δ(t − t ′) (14)

〈η2(t)η2(t
′)〉 = (R̄+Ȳ + R̄−Ȳ �)δ(t − t ′), (15)

where for fluctuations around the steady state, Q+,− and R+,−
(see equations (3)–(6)) depend on the steady-state values of
concentrations, and are denoted by Q̄+,− and R̄+,−. δ(t)

denotes the Dirac delta function.
The coupled equations for δX� and δY � are derived by

inserting expressions (11) and (12) into equations (1) and (2)
and doing an expansion to first order in the small quantities
δX� and δY �. One finds

dδX�/dt = −τ1
−1(δX� − g1δE

t − g̃1δY
�) + η1 (16)

dδY �/dt = −τ2
−1(δY � − g2δE

t − g̃2δX
�) + η2, (17)

where τ1 and τ2 characterize the response time to fluctuations,
with

τ1
−1 = Q̄+

(
1 + K−1

2 Ȳ
)/(

1 + K−1
1 X̄ + K−1

2 Ȳ
)

+ Q̄−
/(

1 + K̄−1
1 X̄�

)
(18)

τ2
−1 = R̄+

(
1 + K−1

1 X̄
)/(

1 + K−1
1 X̄ + K−1

2 Ȳ
)

+ R̄−
/(

1 + K̄−1
2 Ȳ �

)
. (19)

The mean value of Y occurs in the first terms since the enzyme
is shared and not in the second since the two phosphatases
are different. The behavior of the above time constants as
a function of the total enzyme concentration is important
in determining different regimes of behavior and will be
discussed subsequently. Moreover

g1 = τ1Q̄+X̄/Ēt (20)

g2 = τ2R̄+Ȳ /Ēt (21)

and

g̃1 = τ1K
−1
2 Q̄+X̄

/(
1 + K−1

1 X̄ + K−1
2 Ȳ

)
(22)

g̃2 = τ2K
−1
1 R̄+Ȳ

/(
1 + K−1

1 X̄ + K−1
2 Ȳ

)
. (23)

The values of all of these quantities are determined by the
steady-state concentrations of molecules, and the rate and
Michaelis–Menten constants. We should note here that though
equations (1)–(2) involve concentrations, equations (16)–(17)
for the fluctuations should be read in terms of numbers of
molecules, which are related to concentrations through cell
volume.
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The key expressions for the different contributions to the
noise variance can be obtained from equations (16) and (17)
as follows: these equations are linear in δX� and δY � and can
be solved by going to Fourier space. This analysis leads to
an expression of the total variance 〈δX�2〉, which is the sum
of three terms NE

1 , N1
1 , N2

1 , due respectively to fluctuations
in δEt , and the intrinsic noise terms η1 and η2. The complete
expressions which form the basis for the numerical results
discussed in the paper and the details of the calculation are
presented in appendix A.

Gain factor G1(E
t ). An important quantity characterizing

the behavior of the system is the gain factor G1 = dX∗/dEt

which measures the response dX∗, the change in the
phosphorylated substrate, to a small change dEt in the input
enzyme concentration away from the steady state. For the
parallel system considered, its expression can be derived from
equations (16) and (17) by setting their left-hand sides equal
to zero, and averaging over intrinsic noise. One thus finds for
the gain factor G1 of the enzymatic reaction X � X∗

G1(E
t ) = g1 + g̃1g2

1 − g̃1g̃2
. (24)

The different g and g̃ on the right-hand side are given in (20)–
(23). The denominator in the expression of G1 is positive
since it ensures that the system when perturbed away from
the steady state decays back to it exponentially fast. We will
discuss the behavior of the gain as a function of the total
enzyme concentration and correlate it with that of the extrinsic
noise and time scales in the results section. We note that
for a parallel system, in contrast a single enzymatic reaction
[5, 6] (see equations (28)–(29) below), a gain factor and
extrinsic noise are not simply related except in the case where
τ is much larger than τ1 and τ2.

The gain factor provides one important example of what
can be determined by the general approach of perturbing
cellular proteins away from the steady state, such as by an
excursion dEt , and measuring the resultant change dX∗. This
approach provides a practical method for discovering network
connections [14, 15]: it was used to great effect by Santos
et al [16] for uncovering feedback in a MAPK kinase cascade
in rat PC-12 cells stimulated by epidermal or neuronal growth
factors.

Time constants. One way of characterizing the different
regimes of behaviors of noise and gain is by the relative
time scales of the relaxation to the steady state of different
fluctuations. There are three time constants here, τ , the time
scale of the fluctuations in Et , and the bare, relaxation times
τ1 and τ2. The effective relaxation times that occur in the
exponential decay of X∗ and Y ∗ can be obtained and are given
in appendix A. It is more convenient to discuss the behavior
in terms of τ , τ1 and τ2. NE

1 /〈δEt 2〉 depends on all three time
scales. There are two limiting cases of interest, one where
τ � τ1 and τ � τ2, and a second one where τ � τ1 and
τ � τ2. We discuss these in turn:

(a) τ � τ1 and τ � τ2. In this case, the cell relaxes to
the steady state over much shorter time scales than that
of the fluctuations of the enzyme concentration, τ . The
system relaxes ‘instantaneously’ to the steady-state value
corresponding to a change in Et and thus δX∗ = G1δE

t ;
thus the variance is directly connected to the gain factor
of the steady-state response

NE
1 /〈δEt 2〉 	 (G1)

2 (25)

where the expression of G1 is given in (24). This follows
directly in this limit from the general expression (A.5).
Any explicit reference to τ, τ1, τ2 has disappeared.

(b) τ � τ1 and τ � τ2. Here the input concentration
fluctuates over time scales much shorter than those
characterizing the time response of each cascade stage.
In this case one finds that

NE
1 	 τ

τ1
〈δEt 2〉

[
(g1 + g̃1g2)

2

(1 − g̃1g̃2)

1

1 + τ2/τ1
+

g2
1

1 + τ1/τ2

]
.

(26)

The contribution of input noise is now very small since
it is multiplied by the small number τ/τ1. The short
time fluctuations in kinase number are averaged out by
the much longer relaxation time. The system acts as a
low-pass filter cutting out frequencies larger than 1/τ1.

The above limits are applicable even when the difference
between τ and τ1 is only a factor of two or three. Thus
we have checked that the noise NE

1

/〈δEt 2〉 decreases by
a factor of 2.5 when τ goes from 100 s to 20 s for the
reaction rate values of section 5.1, which corresponds to
case 1,1 in figure 3. For these values τ1 varies over
a narrow range in Et with a maximum of 45 s (see
figure 3). Thus τ = 100 s is larger than τ1 by at least a
factor of 2 over the whole range of kinase values, whereas
τ = 20 s is below τ1 over the region in Et where the latter
varies significantly. As expected from the consideration of the
two limits above, the noise is smaller when τ = 20 s (τ < τ1),
whereas—as we have checked as well—G2

1 provides a good
description of noise when τ = 100 s (τ > τ1).

2.2.2. Single enzymatic reaction. For comparison with the
parallel system, we now give for a single enzymatic reaction
(see figure 1(b)), studied by Detwiler et al [5] the expressions
of relaxation time τ1s , of the fluctuations NE

1s of X∗ due to
kinase fluctuations and of the gain factor G1s (for a single
enzymatic reaction X � X∗, the relevant equation is equation
(1) with the Y term in the denominator of Q+ deleted).

τ1s
−1 = k3E

t
/[

K1
(
1 + K−1

1 X̄
)2]

+ k6P1
t
/[

K̄1
(
1 + K̄1

−1
X̄�

)2]
(27)

NE
1s

/〈δEt 2〉 = g2
1/(1 + τ1/τ). (28)

In the case of the single enzymatic reaction the steady-state
gain G1s is identical to g1 (in contrast to the parallel cascade
case) and is given by

G−1
1s = Et

[
1

X̄
(
1 + K−1

1 X̄
) +

1

X̄�
(
1 + K̄−1

1 X̄�
)
]

. (29)

4
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The method for deriving the single reaction expressions (34)–
(36) is identical to the method used above for the parallel
system. If the above expression of τ1s is used, G1s assumes
the form G1s = τ1sk3X̄/(K1 + X̄).

3. Results and discussion

3.1. Reaction rate values

In this section we illustrate the general results presented in the
previous section and the appendix with numerical calculations
in some realistic cases. We solved the nonlinear equations
that determine the steady-state concentrations and evaluated
the analytic expressions using Mathematica [17]. In some
cases, we simulated the effective Michaelis–Menten equations
using the Gillespie algorithm in order to check the validity
of the linear noise approximation. We draw inferences of a
general nature about the distribution of input noise between
two parallel systems.

In order to have a consistent set of parameter values
for our parallel system, we use the work of Fujioka et al
[18], where the rate constants for a Ras/ERK MAPK cascade
were determined with fluorescent probes, and compared with
a number of results from other groups. For system X (see
figure 1) we take from [18] as kinase associated parameters
those of the early stage, the phosphorylation of MEK
by the complex Ras.Raf, and for system Y those of the
phosphorylation of ERK by phosphorylated MEK. The
phosphorylation values are for system X (see reactions (7))

k1 = 0.65 s−1μ M−1;
k2 = 0.065 s−1;
k3 = 0.18 s−1

(30)

and for system Y (see reactions (8))

a1 = 0.88 s−1 μM−1;
a2 = 0.088 s−1;
a3 = 0.22 s−1.

(31)

The corresponding Michaelis–Menten constants are

K1 = (k2 + k3)/k1 = 0.38 μM (32)

K2 = (a2 + a3)/a1 = 0.35 μM. (33)

For the phosphatase reactions (see (9)–(10)), there is more
of a disagreement about parameter values (see the tables in
[18], supplementary material): the values of k6 (or a6) can
vary by a factor of 100 depending on the phosphatase and the
cell line. For simplicity we take the same values for the two
phosphatases, namely [18]

k6 = a6 = 0.3 s−1 (34)

and

K̄1 = K̄2 = 0.07 μM. (35)

We now take the above eight parameter values, k3, k6,K1, K̄1

for reaction X, and a3, a6,K2, K̄2 for reaction Y as
effective parameters for substrate phosphorylation and
dephosphorylation according to equations (1)–(6).

Figure 2. Dependence of the steady-state concentrations of X∗/Xt

on the total enzyme concentration Et for various combinations of
the values of SX and SY . SX denotes the scaling factor for the
Michaelis–Menten K1, K̄1 constants of the phosphorylation of X
and dephosphorylation of X∗. Thus SX = 1 refers to the values of
the Michaelis–Menten K1 and K̄1 given in section 5.1. SY is a
similar scaling factor for Y � Y ∗.

For initial concentrations we use
Xt = 1.4 μM;
Y t = 0.8 μM;

P t
1 = P t

2 = 0.1 μM.

(36)

3.2. Numerical calculations

We continue to focus our attention on system X of the shared
kinase parallel system and investigate the behavior, the shape
and magnitude, of the fluctuations of the phosphorylated
substrate. We claim that the behavior can be understood from
the shape of the steady-state response. Therefore, we first
look at steady-state behavior as a function of Et , and illustrate
our claim with a discussion of figures 2 and 3. Thereafter
we study the distribution of enzyme noise among the two
phosphorylated substrates. We make the point that the choice
of the operating point Et can have a significant impact on the
level of fluctuations in either activated substrate. These results
should be relevant to the construction of synthetic biological
systems.

3.2.1. Steady state and noise. In figure 2 we show the ratio of
steady state phosphorylated X, namely X̄∗, to the total substrate
concentration Xt as Et varies. We use the rate and Michaelis–
Menten constants of section 5.1. Since response sensitivity
depends greatly on the values of Michaelis–Menten constants
[19], we also vary the latter. We call the corresponding scaling
factor SX. For example in figure 2 we consider the case
(SX = 5) where the two Michaelis–Menten constants K1 and
K̄1 of system X, given in section 5.1., are multiplied by 5.
Similarly for reaction Y we have scaling factor SY . We note
that the influence of system Y on system X is proportional
to K1/K2 since this quantity in equation (3) measures the
contribution of Y to the phosphorylation of X.

5
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Figure 3. Dependence of (a) NE
1 /〈δEt 2〉 (equation (A.5)) and (b)

relaxation time τ1 (equation (18)) on the total enzyme concentration
Et for various scaling factor (defined in figure 1 caption) SX and SY

combinations. Inset: dependence of intrinsic noises N1
1 , N 2

1 on the
total enzyme concentration Et for SX = SY = 1. The results are
shown for τ = 100 s.

From figure 2 we learn that for the parameters above
(relations (A.3)–(A.9)), where SX = SY = 1, the response is
abrupt, the fraction of X̄� going from a few percent to 80% over
a very narrow range of Et . The response becomes even more
abrupt if the impact of the presence of system Y diminishes, as
the comparison of SX = SY = 1 with SX = 1, SY = 5 shows.
Conversely, the response of system X typically becomes more
gradual when its Michaelis–Menten constants K1 and K̄1 are
larger as the comparison of cases SX = 5, SY = 1 and
SX = SY = 5 with SX = SY = 1 and SX = 1, SY = 5 in
figure 2 shows.

These features of the steady-state response determine the
amplitude and shape of fluctuations and relaxation time for
X∗. For the same range of scaling factors SX and SY , consider
now in figure 3 fluctuations NE

1 /〈δEt 2〉 of X∗ relative to those
of Et , and the corresponding relaxation time τ1. For both
the maximum occurs close to where the steady-state response,
shown in figure 2, is steepest (X̄∗/Xt ≈ 0.55). Moreover the
narrower fluctuation and relaxation time responses are in Et

and larger their amplitudes at maximum, the steeper the steady-
state response. The comparison in figure 3 of, for example,
the cases SX = SY = 1 and SX = 5, SY = 1 highlights
these interesting facets of the connection between fluctuations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

40

45

E
t
 (μM)

N
1

,2

E
/<

δ 
E

t2
>

Figure 4. Comparison of noise, namely NE
1 /〈δEt 2〉 (solid line) and

NE
2 /〈δEt 2〉 (dash-dotted line), as a function of the kinase Et level,

for the parallel system of two enzymatic reactions and the single
reaction (dashed line)(equation (28)), as represented in figure 1. The
rate and Michaelis–Menten constant values are those of section 5.1
(SX = SY = 1) for both the parallel system and the single enzymatic
reaction. The value of τ = 100 s.

and the steady-state response [20, 21]. These [20, 21] point
out that zero-order ultra-sensitivity is accompanied by long
relaxation times and large random fluctuations; our choice of
parameters (based on one set of experimental values) leads
to sensitivity but not ultra-sensitivity. In particular, when the
Michaelis–Menten constants K1, K̄1 are multiplied by 5, noise
is considerably reduced. Typical relaxation times (see figure 3)
are of the order of a minute and less, which are comparable to
dynamical time scales in MAPK cascades which are measured
to be of the order of a few minutes [16, 22].

One can infer from the inset of figure 3 that for the values
of rate and Michaelis–Menten constants and concentrations
considered, for which gain factors are sizable, the contributions
from noise intrinsic to the enzymatic reactions are generally
small [6]. We will therefore concentrate on extrinsic, i.e.
kinase-induced fluctuations in the following.

The choice of the operating point, i.e. the amount of Et ,
of the parallel system of two coupled enzymatic reactions is
thus crucial for regulating the amount of enzymatic noise. It
determines both the size of fluctuations and the quickness of
response to excursions from the steady state. For example, if
one is in the saturating part of the steady-state response for
the case SX = SY = 1 for which Et > 0.5 (see figure 2),
fluctuations are practically non-existent, and relaxation takes
only a few seconds (see figure 3).

The main point is that the steady-state response
illuminates the salient aspects of fluctuations in X∗. We
will focus next on the distribution of noise between the two
enzymatic reactions activated by the same kinase.

3.2.2. Noise distribution. We start by comparing the level of
noise for the two reactions of the parallel system with that of
a single reaction for the parameters of section 5.1 for which
SX = SY = 1. The comparison in figure 4 is instructive.
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Figure 5. Comparison of reactions X � X∗ and Y � Y ∗ of figure 1 for parameter values of section 5.1 (SX = SY = 1) but with the
dephosphorylation rate k6 of X∗ (see equation (4)) divided by ten. The solid line and subscript 1 refer to reaction X, the dashed line and
subscript 2 to reaction Y. In figures 5(a)–(d) the x-axis represents the total amount of enzyme concentration. (a) Steady-state values X∗ and
Y ∗ normalized by their respective total amounts, (b) NE

1,2/δE
t 2, fluctuations of phosphorylated substrates normalized by enzyme

fluctuations, (c) relaxation times τ1 and τ2, and (d) gain factors G1 and G2. The value of τ = 100 s.

Enzymatic reaction fluctuations for reaction X are, as expected,
considerably higher when this reaction is single (dashed curve)
than when it shares a kinase with a second one (solid curve).
When a kinase is shared, its fluctuations are distributed among
the two reactions, such that the fraction of kinase noise in any
shared kinase reaction decreases relative to the single reaction
case. The other point worth mentioning is that fluctuations
in X∗ can be (for steep steady-state responses) many times
larger than kinase fluctuations. This amplification is the result
of sizable gain factors [6]. Gain factors play as well a role
in the propagation of noise down a signaling cascade [7, 5].
But the situation here is more interesting than in the single
reaction case, since the original amount of kinase fluctuations
now breaks up into two components of unequal weight (see
figure 4), which entails very different fluctuations downstream
from each reaction. In figure 4 the fluctuations in Y ∗ are much
smaller than those in X∗, despite the fact that the reaction
rate and Michaelis–Menten constants for both reactions are
close (see section 5.1). The reason is that the total substrate
concentrations differ, namely Xt = 1.4μ M and Y t = 0.8 μM.
Thus for two enzymatic reactions with dynamics determined
by similar Michaelis–Menten constants, it is the relative size
of total substrate concentrations which determines how kinase
fluctuations are distributed between the two. Fluctuations
are several times larger for the reaction with higher substrate
values. As in figure 3 fluctuations in figure 4 are maximum at
a value of Et which corresponds to the middle of the fast rising
part of the steady-state response in figure 2. The maximum
for the parallel system occurs at a larger value of the enzyme
concentration than for the single enzyme system since the

enzymes are shared between the two systems and this makes
the steady-state response of X somewhat less steep.

Let us now ask what would happen if the relaxation time τ1

of reaction X were slower by a factor of say ten. This situation
is realized when dephosphorylation slows down, i.e. rate k6 in
equation (4) decreases. As the discussion in section 5.1. of the
value of k6 makes clear, this is a possible occurrence. The same
result could be achieved through a smaller total phosphatase
P1

t concentration (see equation (4)), since τ1
−1 ∼ k6K̄1

−1
P t

1
(see equation (18)). When k6 is reduced, X� reaches its steady
state much faster, and saturation as a function of Et obtained
for much smaller values of the kinase. This is clear from
comparing X̄∗(Et ) of figure 1 for SX = SY = 1 with that in
figure 5(a), where the values of rate and Michaelis–Menten
constants are the same, except for the reduction by a factor of
10 of k6. Figure 5(a) shows as well the steady-state response
of Ȳ ∗(Et ) (dashed line), which is less steep than that of X̄∗
(solid line). We have already learned that from the steady-state
behavior one can guess how fluctuations and relaxation times
vary as a function of Et . This is confirmed from the shapes and
magnitudes of the fluctuations of X∗ and Y ∗ relative to kinase
noise in figure 5(b) and from the corresponding relaxation
times in figure 5(c). Fluctuations in X∗ (solid line) are
much larger, over a narrower range of Et , centered at smaller
Et , than those of Y ∗ (dashed line), reflecting the difference
in steepness of the respective steady-state responses of
figure 5(a). As expected, for smaller k6, relaxation times
τ1(E

t ) for reaction X can now reach values of the order of
many minutes. Large relaxation times entail large gain factors,
as is clear from expression (24) and the fact that g1, g̃1 are

7



Phys. Biol. 5 (2008) 046002 G Viswanathan et al

proportional to τ1 (equations (20), (22)), and illustrated in
figure 5(d) (solid curve).

What is clear from figure 5 is how the choice of an
operating point impacts on the amount of fluctuation in the
two phosphorylated substrates. By increasing Et from zero,
figures 5(b) shows that one encounters first fluctuations of that
phosphorylated substrate which has the steepest steady-state
response, which is X∗ in figure 5(a) (solid curve). The range in
kinase concentration of these fluctuations is typically narrow.
Thus one goes rapidly from a region of large fluctuations to an
operating point where fluctuations in both reactions are small,
to a region of Et where fluctuations in the steepest system are
very small and those of the less steep system are important.
We know however from our previous considerations that the
latter fluctuations are smaller and sometimes much smaller
(see figure 5(b)) than the former. Finally at large Et

where the steady-state responses saturate, fluctuations in either
phosphorylated substrate are gone. Enzymatic fluctuations are
not transmitted by either reaction.

From the discussion of figure 5 it is clear that the choice
of operating point determines to what extent enzymatic noise
propagates through what can be the first stage of signaling
cascades activated by a common enzyme. The operating point
is set by the cellular machinery in response to a stimulus, and
depending on its value there exist several options for enhancing
or mitigating enzymatic noise in one or the other or both
enzymatic reactions.

If cellular behavior is studied at a single operating point
rather than over a range of kinase values, how can one judge
what situation avails for the parallel system of figure 1? As can
be seen from figure 5, the behavior of gain factors mimics that
of fluctuations. However, while fluctuations entail averages
over single cells, gain factors can be measured for a population
of cells. In [16] siRNA were used selectively to move certain
kinases away from steady state and measure the resulting
changes in others through western blot assays. Imagine then
that for a given operating point, both gain factors are small,
small meaning closer to 1 (locally linear steady-state response)
than to 10. This entails in all cases that fluctuations in X∗

and Y ∗ are small and relaxation times fast. It also means
that in terms of the steady-state response the operating point
corresponds to saturation, or else that responses to changes
in enzyme concentration are very gradual for both enzymatic
reactions. With similar reasoning in other situations, much
can be inferred, simply measuring the gain at some operating
point, about how common enzymatic fluctuations impact on
the two phosphorylation reactions that can initiate two separate
signaling pathways.

4. Conclusion and outlook

Signaling pathways sharing a common kinase frequently occur
in the topology of cellular networks. We have developed here
the formalism for the shared kinase fluctuations around the
steady state among two enzymatic reactions. We imagine the
kinase in question to be at the first level of activation of cellular
components once a cell is stimulated. Since for each cell early
kinase fluctuations can propagate through signaling pathways

down to the activation of transcription factors, our formalism
for the early stage of shared kinase-induced fluctuations should
be helpful in designing synthetic biology modules for cell-to-
cell variability. The general formalism applies to single cell
noise. As techniques for single cell measurements improve,
one can envisage experiments, such as those on relaxation
toward the steady state, through which one could measure
time constants and also disentangle intrinsic noise and the
extrinsic noise due to kinase fluctuations. The prospect of
actually measuring a quantity such as the relaxation time τ1

appears nevertheless remote, although recently single enzyme
fluctuations have been measured [23, 24] that enable one to
determine kinase rate and Michaelis–Menten constants [23],
or the statistics of bursts [24].

Our work illustrates the wide range of possible behaviors
available to a cell as its steady-state operating point shifts
according to, for example, the type and the amount of a
stimulus. We have highlighted the fact that a knowledge
of steady-state responses gives insight into many aspects of
phosphorylated substrate fluctuations, such as their magnitude
and the range of kinase concentrations over which they are
important. But even when the biological system is studied at
one operating point only, we have shown that the measurement
of gain factors across the cell population at this single point
gives useful indications of how much of the shared kinase noise
gets transmitted through the two phosphorylation reactions,
and down which one of the two pathways. What about the role
of feedback? In the work of Santos et al [16] the existence of
a feedback loop, negative or positive according to the type
of stimulus, in a MAPK kinase cascade was established.
Imagine then that for some stimulus the situation is that
described in figure 5, but for another stimulus a feedback
loop gets activated that at steady state changes the amount
of phosphatase in reaction X, all this without any change in
the operating point. The change in phosphatase will entail a
change in the steady-state response which will be steeper if
phosphatase concentration decreases. Compared to the case
of the first stimulus the result will be to displace for system
X the curves for fluctuations, relaxation time and gain factor
as a function of Et (figure 5), and alter their relative position
to the corresponding curves for reaction Y. The feedback loop
can thus alter, if the operating point is the same, the balance
of enzymatic fluctuations between the two reactions, a feature
with implications for the functioning of real and synthetic
systems.

Our numerical studies are based on a range of kinetic
and Michaelis–Menten constants derived from MAPK kinase
studies. For different situations or different ranges the systems
would need to be re-examined with the help of the formalism
provided.
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Appendix A. Calculation of the different noise
contributions to the variance of X∗

Equations (16) and (17) which are linear in δX� and δY � are
solved by going to Fourier space. They lead to an expression
of the total variance 〈δX�2〉, which is the sum of three terms,
originating from fluctuations δEt , and η1 and η2, namely

〈δX�2〉 =
∫

dω

2π
|g1(ω)|2〈|δEt(ω)|2〉

+ (Q̄+X̄ + Q̄−X̄�)

∫
dω

2π
|a1(ω)|2

+ (R̄+Ȳ + R̄−Ȳ �)

∫
dω

2π
|b1(ω)|2. (A.1)

The second term with its coefficient coming from (14) and the
third one with its coefficient coming from (15) represent the
contributions of intrinsic noise (due to randomness of the
reactions) η1 and η2, respectively. The expressions in (24) of
g1(ω), a1(ω) and b1(ω) follow from the equations in Fourier
space. They are

g1(ω) = (g1 + g̃1g2 + iωτ2g1)/[1 − g̃1g̃2

+ iω(τ1 + τ2) − ω2τ1τ2] (A.2)

a1(ω) = (iωτ1τ2 + τ1)/[1 − g̃1g̃2 + iω(τ1 + τ2) − ω2τ1τ2]

(A.3)
b1(ω) = τ2g̃1/[1 − g̃1g̃2 + iω(τ1 + τ2) − ω2τ1τ2]. (A.4)

These expressions show that the enzymatic reactions act as
low-pass filters (|g1(ω)|2 ∼ ω−2 for large ω) on the input
fluctuations in δEt .

In order to compute 〈δX�2〉 we need an expression for
δEt(ω) in the first term of (24). If kinase E itself is activated
through a phosphorylation–dephosphorylation process with
extrinsic noise, and relaxes back to the steady state with a
time τ , one has 〈|δEt(ω)|2〉 = 2τ 〈δEt 2〉/(1 + ω2τ 2) [5]. One
finds after performing the first integral on the right-hand side
of (24) using expression (25) for g1(ω)

NE
1

〈δEt 2〉 = 1[
1 + τ 2

τ1τ2
(1 − g̃1g̃2)

]
+ (τ/τ1 + τ/τ2)

(A1 + B1)

(A.5)

where

A1 = (g1 + g̃1g2)
2

1 − g̃1g̃2

τ

τ1 + τ2

(
1 +

τ

τ1
+

τ

τ2

)
(A.6)

B1 = ττ2

τ1(τ1 + τ2)
g2

1 . (A.7)

The subscript refers to system 1 of X and X�. NE
1 (equation

(A.5)) represents the contribution to the fluctuations of X�

around its steady-state value due to fluctuations in the input
kinase. The second and third term in (24), which we shall
denote by N1

1 and N2
1 , represent the contribution to 〈δX∗2〉

from fluctuations of respectively η1 and η2. These terms can
be written in the following form:

N1
1 = (Q̄+X̄ + Q̄−X̄�)τ1

2

+
(Q̄+X̄ + Q̄−X̄�)τ1

2

(
1
τ2

1
τ1

+ 1
τ2

) (
g̃1g̃2

1 − g̃1g̃2

)
(A.8)

N2
1 = (R̄+Ȳ + R̄−Ȳ �)τ2

2

(
1
τ1

1
τ1

+ 1
τ2

)(
g̃1

2

1 − g̃1g̃2

)
. (A.9)

The expressions can be interpreted following Paulsson [25].
The first term in N1

1 is the variance 〈(δX∗)2〉 in the non-
interacting case and is just the Einstein fluctuation dissipation
result. The second term arises due to the coupling resulting
from the sharing of the enzyme by the two reactions. In this
term the free variance is multiplied by the second factor which
arises from time averaging and a third factor that corresponds
to an interaction coefficient. Analogous interpretations apply
to the result for N2

1 . Fluctuations 〈δY �2〉 are similar to those of
〈δX�2〉, and are given by similar expressions with subscripts 1
and 2 interchanged. For completeness we presently have the
result for the covariance 〈δX∗δY ∗〉

〈δX∗δY ∗〉 = (Q̄+X̄ + Q̄−X̄�)τ1

2

1
τ2

1
τ1

+ 1
τ2

g̃2

1 − g̃1g̃2

+
(R̄+Ȳ + R̄−Ȳ �)τ2

2

1
τ1

1
τ1

+ 1
τ2

g̃1

1 − g̃1g̃2
. (A.10)

The results for the intrinsic noise with delta-function
correlations can be also easily obtained by employing a linear
algebra formalism [26].

In the subsection on time constants we discussed the
relative values of τ1, τ2 and τ . The time scales τ1 and τ2 appear
explicitly in the rate equations and determine the relaxation
rates of the uncoupled systems. The autocorrelation functions
〈δX∗(t)δX∗(0)〉, etc, of the coupled reactions can be computed
explicitly and lead to a sum of exponential terms with effective
relaxation (autocorrelation) times τ±. These can be obtained
directly from the linearized equations or from the poles of
|a1(ω)|2. We give the expressions below

τ−1
± = 1

2

⎛
⎝ 1

τ1
+

1

τ2
±

√(
1

τ1
− 1

τ2

)2

+ 4
g̃1g̃2

τ1τ2

⎞
⎠ . (A.11)

The values of τ± are of the order of τ1 and τ2; τ− is larger than
τ1 and τ+ < τ2 for τ1 > τ2.

Glossary

Kinase. Enzyme that catalyses phosphorylation of a
substrate protein.
Phosphatase. Enzyme that catalyses dephosphorylation of
a substrate protein.

Gain factor. Measures the change in reponse of a system’s
output to a (small) change in its input.

Operating point. The amount of available kinase for
substrate phosphorylation.
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