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Transversal hot zones have been observed in industrial and laboratory packed-bed
reactors. Yet, previous modeling attempts failed to predict them without making the
unrealistic assumption that the transversal heat dispersion exceeds that of the reactants.
It is shown that the formation of transversal hot zones in a uniformly active catalytic
reactor is strongly dependent on the reaction kinetics. For example, transversal spatio-
temporal concentration and temperature patterns can be predicted to form in a shallow
adiabatic packed-bed reactor using realistic parameters for a catalytic reaction, the rate
of which may oscillate under constant ambient conditions. Various experimentally tested
rate expressions, such as those describing the oxidation of CO, exhibit this feature. A
large number of different types of stable, transversal patterns may form for a sufficiently
large reactor diameter, most of which do not exhibit azimuthal symmetry. Surprisingly, the
time-averaged effluent reactant concentration and the period of the different spatiotem-
poral patterns are rather similar and close to those obtained under a uniform oscillating
state. A systematic procedure is presented for finding the initial conditions leading to
formation of the different patterns. Numerical simulations show that, because of their
homoclinic features, the spatiotemporal patterns have a long period (order of hours), in
agreement with various reported laboratory experiments. © 2005 American Institute of
Chemical Engineers AIChE J, 52: 705–717, 2006
Keywords: packed-bed reactors, transversal hot zones, transversal concentration pat-
terns, oscillatory kinetics, homoclinic motion

Introduction

A uniform temperature is usually expected to exist in the
cross section of an adiabatic packed-bed reactor. However,
formation of transversal (perpendicular to the flow direction)
local hot zones has been reported to occur in various adiabatic
industrial and laboratory reactors. Boreskov et al.1 and Matros2

observed several, azimuthally nonsymmetric hot zones at the
exit of a packed-bed reactor during the partial oxidation of
isobutyl alcohol. Barkelew and Gambhir3 reported the forma-
tion of clinkers—small lumps of molten catalyst—during hy-
drodesulfurization in trickle-bed reactors. Wicke and Onken4,5

observed a nonuniformity of transversal temperature in a lab-
oratory packed-bed reactor during the oxidation of CO. Infra-
red imaging revealed temperature pattern formation in various
laboratory reactors including the exterior surface of a radial
flow reactor6,7 and the top of shallow packed-bed reactors.8-11

Sundarram et al.12 indicated that global coupling between the
effluents and the top of the reactor affected these temperature
patterns.

Local hot zones may decrease the yield of the desired prod-
ucts and deactivate the catalyst. In addition, they may initiate
undesired highly exothermic reactions that have a negligible
rate under uniform temperature operation, leading to a run-
away. It is very difficult to detect small transversal hot regions
in large commercial reactors. They can create severe safety
hazards when present next to the reactor walls by decreasing
the metal strength, which in turn may cause a crack in the
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reactor wall and the subsequent release of reactants and prod-
ucts may lead to an explosion. Several explosions of trickle-
bed reactors have been attributed to this situation. Clearly,
understanding and the ability to predict the conditions leading
to evolution of local hot zones are of paramount industrial
importance because it is a prerequisite for developing operation
and control procedures that circumvent their formation.

Matros2 showed that transversal hot spots may form as a
result of nonuniform packing of the reactor. Obviously, non-
uniformly active reactor could generate transversal hot zones.
Jaffe13 showed that an internal obstruction may lead to hot spot
formation during the hydrogenation process. Balakotaiah’s re-
search group14-17 showed that spatiotemporal temperature pat-
terns may evolve as a result of hydrodynamic instabilities in a
down-flow packed-bed reactor. However, this occurred for
flow rates much lower than those in commercial reactors.
Similarly, Benneker et al.18 indicated that hydrodynamic insta-
bility may generate hot and cold spots under certain conditions
in an adiabatic packed-bed reactor. Middya et al.19 showed that
temperature and concentration patterns may form on the sur-
face of a catalyst as a consequence of global coupling between
the surface and the mixed reactants in a continuous stirred tank
reactor (CSTR) whose temperature is kept constant.
Nekhamkina et al.20 showed that during the oxidation of CO
various temperature patterns may form on a catalytic fiber cloth
as a result of the global coupling between the catalyst and the
mixed reactants in a CSTR, kept at a constant temperature.

Previous attempts to predict temperature pattern formation
by a traditional adiabatic packed-bed reactor model required
use of unrealistic parameter values. Schmitz and Tsotsis21

found that the stationary patterns formed in a chain of inter-
acting catalyst pellets only when the rate of species exchange
exceeded that of heat exchange. However, the heat exchange is
greater than that of the species. Balakotaiah et al.22 found that
temperature patterns may form in an adiabatic packed-bed
reactor used to conduct a bimolecular reaction (with Lang-
muir–Hinshelwood kinetics), if the rate of transversal heat
dispersion is lower than that of the species. However, Yakhin
and Menzinger23 indicated that the dispersion of heat is greater
than that of the species in packed-bed reactors. Viswanathan et
al.24 proved that a two-variable (temperature and reactant con-
centration) pseudo-homogeneous model of a (shallow) adia-
batic packed-bed reactor cannot predict the formation of a
stable, stationary temperature pattern, if it accounts for the fact
that the transversal dispersion of heat is greater than that of the
reactants. This stability analysis was conducted for reactions
whose rate depends only on the surface concentration of a
limiting reactant and temperature. In this study, we use a more
detailed rate expression that depends—in addition to the con-
centration of the limiting reactant and temperature—on the
adsorbed concentration of a nonlimiting reactant.

Experiments by Ertl’s research group revealed that surface
concentration patterns may evolve under isothermal conditions
on catalytic surfaces exposed to constant reactant concentra-
tion.25 Several theoretical models can predict such concentra-
tion pattern formation under isothermal conditions. These mod-
els use kinetic expressions that can lead to isothermal rate
oscillations. The mechanisms that lead to these oscillatory rate
expressions include such phenomena as reaction-induced sur-
face restructuring,26,27 impact of subsurface reactant adsorp-
tion,28-32 reversible adsorption desorption of a poison,33-35 and

cluster formation.36 These rate expressions have successfully
predicted experimental observations. Depending on the initial
conditions, these models usually lead to evolution of either a
uniform oscillatory state or one with a spatiotemporal concen-
tration pattern. So far, there is no information on the total
number of the possible stable patterns that may form or of the
initial conditions that lead to their formation.

The above experiments and models and the spatiotemporal
nature of most laboratory observations motivated our study.
The first and main goal is to demonstrate the possibility of
predicting transversal temperature patterns by a model with
realistic parameters for a reaction, such as CO oxidation, that
can exhibit isothermal rate oscillations. The second goal is to
develop a systematic procedure for predicting the possible
different stable temperature patterns and the initial conditions
that lead to their formation. The third goal is to determine the
impact of the difference between the various patterned states on
the time-averaged effluent reactant concentration and period of
oscillations.

Mathematical Model

We investigate pattern formation using a pseudo-homoge-
neous model of a uniformly active adiabatic packed-bed reac-
tor, in which a single catalytic reaction,

aA� g� � bB� g� 3 cAa/cBb/c� g� (1)

occurs, with a large excess of B in the feed. The model
accounts for mass transfer resistance between the gaseous and
adsorbed reactant concentration and for the heat dispersion
being greater than that of the species. We assume that all the
physical properties are independent of the temperature and
species concentrations. We account for the effective thermal
conductivity by the Vortmeyer and Schaefer37 relation

�� � �� sg � �1 � ���� s (2)

where �� sg � [v2(�Cp)g
2/(hav)] accounts for the heat transfer

between the gas and catalyst pellets. The concentration of the
gaseous reactant A and the dimensionless temperature satisfy
the following equations:
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where x and y are the fractional surface coverage of species A
and B and �1(x, y, c, 
) and �(x, y, 
) are the net rate of A
adsorption and the reaction rate per unit surface area of the
catalyst, respectively. ��

2 is the Laplacian in � and  coordi-
nates.

The dimensionless variables and parameters are

c � CA/CA,in 
 � �T � Tin�/T � � tv/L

	 � z/L � � r/R Nc � avM/CA,in
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where M is the surface adsorption capacity. The transversal
heat and species dispersion coefficients (�� � and D�) differ
from those in the axial direction (�� a and Da). The correspond-
ing boundary conditions are
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We consider here a reaction whose rate may exhibit isother-
mal rate oscillations. Such behavior has been observed for
various reactions, CO oxidation being the one most extensively
investigated. The investigative team of Ertl has clearly dem-
onstrated that such oscillations may be encountered under
isothermal conditions.25-27 Isothermal rate oscillations can be
predicted by kinetic models in which the reaction rate depends,
in addition to the adsorbed surface reactant concentration, on
an additional variable, such as the temporal state of the sur-
face,31 subsurface reactant concentration32,38 or fractional sur-
face coverage.28,30 Here we use a kinetic model that contains a
minimal number of parameters and assumes that the reaction
proceeds by the Langmuir–Hinshelwood mechanism, as fol-
lows:

A� g� � �S� -|0
k1

k�1

� A � S�

B2� g� � 2�S� -|0
k2

k�2

2�B � S�

(A � S) � �B � S� ¡
k3

�AB��g� � 2�S� (9)

Following Slinko,28-30 we assume that the reaction rate con-
stant k3 depends on the fractional surface coverage of species
B, y. We consider a case in which the product immediately
desorbs from the surface after being formed. The fractional
surface coverage of the adsorbed species satisfy the equations
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Our goal is to predict the conditions under which transver-
sally nonuniform states may occur and to gain insight into their
stability and dynamics. Unfortunately, both the analysis and
dynamic simulations of the full model are rather demanding
and difficult to present in a paper. Thus, to simplify the model
analysis and presentation we consider here a reduced version of
the full model: that of a shallow reactor (��), obtained by a
Liapunov–Schmidt reduction39 of the full model. A similar
simplifying approach was previously used by Balakotaiah et
al.40 and Viswanathan et al.24 Details of the reduction proce-
dure are described by Viswanathan.41

The shallow reactor model consists of Eqs. 10 and 11 and
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where we denote by 
 and c the spatial (axial) averaged
quantities in the shallow reactor model, that is,

AIChE Journal 707February 2006 Vol. 52, No. 2




 � �
0

1


d	 c � �
0

1

cd	 (18)

The corresponding boundary conditions are
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The numerical solution was obtained by discretizing the
model using a second-order central difference scheme. To
circumvent the singularity at the center (� � 0), the grid points
were placed at the radial positions �j � (2j � 1)/(2N � 1) @ j �
1, N.42 The discretized model is similar to a cell model in a
circular cross section, with the diffusion terms (in the contin-
uous model) mimicked by exchange coefficients among the
cells. The dynamic simulations were conducted using a linear
implicit extrapolator (LIMEX).43,44 The one dimensional cal-
culations were conducted using the LAPACK option. The
two-dimensional calculations were conducted using a sparse
iterative linear solver (GMRES/BiCGSTAB). The sparse iter-
ative solver in the linear step usually converged in two to three
iterations. Steady-state calculations were performed using
Newton iteration.

Procedure of Finding Spatiotemporal States

Our study is the first to show that transversal hot zones may
form in a uniformly active, adiabatic shallow packed-bed re-
actor in which the transversal heat dispersion exceeds that of
the reactants. To find these states we first construct the bound-
ary of the parameter region in which these hot zones can form.
We then apply initial conditions that lead to their evolution.

The oscillatory kinetic model we use can lead to stable,
homogeneous oscillations within a bounded range of a bifur-
cation parameter. The branch of these solutions emanates from
two Hopf bifurcation points, determined by a linear stability
analysis of the uniform solutions.

A stable uniform state may become unstable to inhomoge-
neous transverse perturbations

�mn � �Jm��mn��eim (20)

where Jm is the Bessel function of first kind. (Jm is real in our
problem because of the no-flux boundary conditions.45) This
stability transition occurs at the neutral stability point, leading
to evolution of nonuniform states. The neutral stability curve is
the locus of neutral stability points in a two-parameter plane.
At a neutral stability point

��uss, Da� � 0 (21)

��u��uss � �� � ��r � i�i� � 	i���r � i�i� (22)

where � represents the steady-state model equations, �u� �uss
is

the first Fréchet derivative of � with respect to u evaluated at
the steady state uss. � is the transverse perturbation matrix, �
is the coefficient of the imaginary eigenvalue, and � � �r 	
i�i are the corresponding complex eigenvectors. Thus, the

neutral stability point is obtained by solving Eq. 21 simulta-
neously with

��u��uss � �� � �r � ��i � 0 (23)

��u��uss � �� � �i � ��r � 0 (24)

��r� � ��i� � 1 � 0 (25)

�r � �i � 0 (26)

The base state (uss) used in the linear stability analysis of the
uniform state and of the neutral stability is the same because of
the no-flux boundary conditions. At very large values of R/dp,
the transversal Pe is very large and the contribution of the
transversal dispersion becomes negligible. Thus, the neutral
stability points at very large R/dp asymptotically approach the
bifurcation parameter at which the uniform state has a Hopf
bifurcation point. Starting at a neutral stability point at very
large R/dp, a pseudo-arc length continuation with respect to
R/dp is used to compute the oscillatory neutral stability curve
for a specific transversal inhomogeneous perturbation (m and n
values in Eq. 20) in the R/dp vs. the bifurcation variable plane.
This curve bounds a region in which nonuniform state solutions
exist.

The nonuniform states are stable only within a certain region
of attraction, that is, they are attained only from certain sets of
initial conditions. To find a specific inhomogeneous state, we
choose R/dp and a Da value slightly above the neutral stability
curve for the specified m and n values. We then conduct
dynamic simulations using as the initial condition

u � uss � A�rJm��mn��eim (27)

where the coefficient A was usually taken to be unity. When the
initial condition did not lead to the desired state, another value
of A in [0.1, 1.0] was used. After a nonuniform state was
obtained close to a neutral stability curve, a sequence of dy-
namic simulations for slightly perturbed parameters can be
used to find this state at other sets of parameters.

We shall illustrate this procedure by first finding states
exhibiting different spatiotemporal concentration patterns in an
isothermal shallow bed. We show this case first because it
enables analytical determination of the Hopf bifurcation points.
Next we apply the procedure to predict spatiotemporal temper-
ature patterns in a shallow adiabatic packed-bed reactor.

In all the simulations we used the activation energy data
suggested by Slinko and Jaeger46 for the adsorption–desorption
steps. The adsorption–desorption Da values were based on
those used by Ivanov et al.30 The kinetic and other model
parameters used in all the simulations are

�1 � 0 ��1 � 2.04 �2 � 1.02 ��2 � 34.7

Da1 � 4.5 � 10�4 L/dp � 1.0 Da�1 � 1.56 � 10�5

Da2 � 7.29 � 10�4 Da�2 � 4.25 � 10�7 � � 15

Le � 1000 Nc � 2000 �3 � 14.3 � � 0.3
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Pe�
m � 5.0�R/dp�

2 Pe�
h � 1.0�R/dp�

2 (28)

Note that the transversal dispersion of heat is fivefold larger
than that of the reactants, that is,

Pe�
m � 5Pe�

h (29)

Spatiotemporal Concentration Patterns in an
Isothermal Shallow Reactor

We consider the spatiotemporal dimensionless concentration
patterns forming in an isothermal shallow reactor, that is, � �
0 and 
 � 0. In the isothermal case, the four-variable ��
model (Eqs. 10, 11, 16, and 17) is reduced to a three-variable
model, that is, Eqs. 10, 11, and 17 with 
 � 0. At steady state,

x �
Da1c�1 � y�

Da1c � Da�1 � Da y exp���y�
(30)

The steady states are the solutions of
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where x satisfies Eq. 30. Steady-state bifurcation diagrams
were computed by pseudo-arc length continuation. The trans-
versally uniform steady state (�) is stable to homogeneous
perturbations when the two eigenvalues of the Jacobian
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have a negative real part. Uniform oscillatory solution (�
)
emerge at Hopf bifurcation points (�) at which the two eigen-
values of Eq. 33 are purely imaginary.

To determine the neutral stability points we subject the
uniform state to the following small nonuniform perturbation:

�mn��, � � ��1Jm��mn��eim

�2Jm��mn��eim

�3Jm��mn��eim
� (34)

where m and n are the azimuthal and radial mode numbers and
eim and Jm(�mn�) are the corresponding eigenfunctions. Be-
cause of the no-flux boundary condition at � � 1, �mn satisfies
the condition

dJm��mn��

d�
�

��1

� mJm��mn� � �mnJm
1��mn� � 0 (35)

The first nine eigenvalues �mn of the spatial perturbations are
reported in Table 1. Only perturbations with m � 0 are azi-
muthally symmetric. An oscillatory neutral stability point is
obtained by a simultaneous solution of the steady-state Eqs. 10,
11, and 17 and the associated eigenvalue problem [evaluated
around the base state uss � (x, y, c, 0)ss]:

��Da1c � Da�1 �
��

�x��
uss

�1 � �Da1c �
��

�y��
uss

�2

� Da1�1 � x � y��uss�3 � 	i��1 (36)

��2Da2�1 � x � y� �
��

�x��
uss

�1 � �2Da2�1 � x � y�

� 2Da�2y �
��

�y��
uss

�2 � 	i��2 (37)

Nc�Da1c � Da�1��uss�1 � Nc�Da1c��uss�2

� ��mn
2

Pe�
m � 1 � NcDa1�1 � x � y��uss��3 � 	i��3 (38)

where � is the frequency (up to first-order terms) of the
emerging oscillations. [Note that (�1, �2, �3) are complex.]
Nonuniform states next to the neutral stability boundary were
computed using Eq. 27 as the initial condition.

The eigenvalue Eq. 35 has an infinite number of solutions
corresponding to an infinite number of transversal perturba-
tions (Eq. 20), leading to a large number of different types of
spatiotemporal patterns. We limit the description and analysis
here to spatiotemporal patterns arising from the first three
transversal perturbations for R/dp � 100.

Figure 1 shows a case in which a branch of stable, uniform
oscillatory states (�
) exists between two supercritical Hopf
points that are on the low limiting-reactant concentration (high
conversion) branch of the uniform solutions (�). (The uniform
stationary steady-state solutions bounded between these two
supercritical Hopf points are unstable to uniform perturba-
tions.) The corresponding neutral stability points in this case
for the first three spatiotemporal patterns: traveling wave (�,
�11 � 1.8412), antiphase motion (��, �21 � 3.0542), and
targets (�, �01 � 3.8317) are very close to the Hopf bifurcation
points. Thus, the distinction between these points cannot be
shown in the figure. Dynamic simulations close to these neutral
stability points, using the initial conditions defined by Eq. 27,

Table 1. First Nine Eigenvalues Satisfying Eq. 35

No. m n �mn

1 1 1 1.8412
2 2 1 3.0542
3 0 1 3.8317
4 3 1 4.2012
5 4 1 5.3176
6 1 2 5.3314
7 5 1 6.4156
8 2 2 6.7061
9 0 2 7.0155
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generated traveling waves, antiphase oscillations, and targets.
Additional dynamic simulations for various Da were used to
determine the branches of the three spatiotemporal states. Fig-
ure 1 shows the maximum and minimum of the effluent reac-
tant concentration of these spatiotemporal states and of the
uniform oscillatory state. The effluent reactant concentration
(�c�) of the targets and uniform oscillatory states are indistin-
guishable in this figure. They are slightly higher (lower average
conversion) than those of the traveling wave and antiphase
motions.

Numerical simulations have shown that the period of the
transversal spatiotemporal motions is rather long and close to
that of the uniform oscillations. Figure 2a shows that the period
(��
) of the uniform oscillations is of the order of several
thousands over a range of Da values. Because the dimension-
less time is scaled with respect to the reactor residence time �r,
the corresponding physical period of the oscillations is

tP � P�
�r (39)

Thus, the period of the oscillations is of the order of 2 h for a
reactor having a residence time of about 1 s. Figure 2b shows
that the percentage deviation between the period of the three
spatiotemporal states and that of the uniform oscillations:

%�P � 100 � �P � P�
�/P�
 (40)

is always small ( 	8%).
The simulations indicate that features of the transversal

patterns had a minor impact on the temporal effluent reactant

concentration. Figures 3a and 3b show that the temporal efflu-
ent reactant concentration �c� of the three patterns (at Da �
0.224) oscillated with a rather long period. The temporal ef-

Figure 1. Branches of �c� vs. Da plane under isothermal
conditions of the uniform steady states (�),
and the maxima and minima amplitudes of the
uniform oscillatory states (�
), traveling
waves (�), antiphase (��), and targets (�)
motions.

Figure 2. (a) Dependency of the period of uniform oscil-
latory states on Da. (b) Percentage deviation of
the period of the traveling waves (�), an-
tiphase (��), and targets (�) motions from that
of the uniform oscillatory states.

Figure 3. Temporal effluent reactant concentration �c� dur-
ing traveling waves (�), antiphase (��), targets
(�), and uniform oscillations (�
) at Da � 0.224.
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fluent reactant concentrations are very close to each other in
this example, when either traveling waves or antiphase oscil-
lations occur. Thus, it is not possible to distinguish between
them in Figure 3a. Similarly, the temporal effluent concentra-
tions during uniform oscillations or targets motion are very
close to each other (Figure 3b). The period of the uniform
oscillations and the target pattern is slightly shorter and their
temporal effluent reactant concentration differs slightly from
that of the other two. The period-averaged effluent reactant
concentration in this case is 0.769, 0.77, and 0.773 for the
traveling wave, the antiphase motion, and the target motion,
respectively. This value is comparable to 0.776 obtained during
the uniform oscillations. The effluent reactant concentration of
the corresponding unstable (uniform) state is 0.72.

Contour snapshots of the spatial concentration patterns are
shown in Figure 4 at two instances for the three transversal
patterns. The snapshot, denoted as “a” in Figures 3 and 4, was
taken while the temporal effluent concentration is decreasing
and the second (“b”) while it was increasing. When a traveling
wave (band pattern) exists, a high surface coverage pulse forms
near the boundary of the cross section during the period in
which the effluent temporal concentration decreases. It travels
across the reactor until it reaches a diametrically opposite point
on the reactor boundary. The high surface coverage pulse
eventually captures the whole cross section. This is followed
by the formation of a low surface coverage wave that eventu-
ally conquers the surface during the second half of the period.
During the antiphase oscillations, two high and low surface
coverage zones exist at diametrically opposite locations. The
high (low) surface coverage zones eventually expand and cap-
ture the whole cross section at the peak (bottom) of the cycle.
When a target motion exists, rings of high surface coverage
emerge near the boundary and travel to the center until they
capture the whole cross section. During the second half of the
period, low surface coverage rings emerge near the surface and
eventually capture the whole cross section.

Transversal Hot Zone Motion in a Uniformly
Active Shallow Reactor

The evolution of spatiotemporal transversal states in an
isothermal shallow reactor provides very useful guidance into
the formation of nonisothermal transversal states in an adia-
batic packed-bed reactor. In the nonisothermal reactor simula-
tions we used the same rate expression and kinetic parameters
as those in the isothermal case. The analysis and simulations of

the nonuniform states case are more intricate than those of the
isothermal case, but the strategy of finding these states is rather
similar. A uniform steady state of the shallow, adiabatic
packed-bed reactor is a solution of Eqs. 10 and 11 and Eqs. 16
and 17 after deleting the time derivatives and the terms ac-
counting for the transverse dispersion. A uniform steady state
is stable to homogeneous perturbations when all the eigenval-
ues of the Jacobian
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Figure 4. Snapshots of the concentration at two differ-
ent times (marked as a and b in Figure 3) dur-
ing traveling waves (�), antiphase (��), and
targets (�) in an isothermal reactor.
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evaluated at uss � (x, y, c, 
)ss have a negative real part. At a
Hopf bifurcation, 	� has a pair of purely imaginary eigenval-
ues.

To determine a neutral stability point at which a transition to
a spatiotemporal state occurs, we expose a uniform unstable
steady state, bounded between two Hopf points to small spatial
nonuniform perturbations of the form

�mn��, � � �
�1Jm��mn��eim

�2Jm��mn��eim

�3Jm��mn��eim

�4Jm��mn��eim
� (42)

where Jm is the Bessel function of first kind and �mn is the
transverse spatial eigenvalue that satisfies Eq. 35. The state on
the neutral stability point satisfies the steady-state equations
and the linearized eigenvalue problem

�	� � �� � ��r � i�i� � 	i���r � i�i� (43)

where

� � �
0 0 0 0
0 0 0 0
0 0 �mn

2 /�Le Pe�
h � 0

0 0 0 �mn
2 /Pe�

m
� (44)

The oscillatory neutral stability curves for the first three
transverse modes are shown in Figure 5. The bifurcation dia-
gram of the corresponding stationary uniform states is shown in
the insert of that figure. Two supercritical Hopf bifurcation
points (at which a branch of stable, uniform oscillations
emerge) exist on the high-temperature branch of the uniform
solutions. Values of � at the two limiting Hopf points are 5 �
10�4 and 12 � 10�4, which correspond to an oscillation period
(2�/�) on the order of 5200 and 12,000. A branch of uniform

stable oscillatory states exists between these two supercritical
Hopf points. The neutral stability curves are bounded between
the Da values of these two Hopf points. These curves asymp-
totically approach the two Hopf bifurcation points at very large
values of R/dp. The simulations show that the neutral stability
curve of any mode is always contained within those of the
lower modes.

The spatiotemporal solutions were obtained, as were those in
the isothermal case, by perturbing the unstable, uniform high-
temperature steady state uss close to the neutral stability curve
with the transverse spatial modes (Eq. 27). Dynamic simula-
tions were used to determine the branches of these spatiotem-
poral states. Each mode of perturbation can lead to a different
type of spatiotemporal transversal temperature pattern. We
restrict the analysis here to the patterns obtained by spatial
perturbations corresponding to the first three modes for R/dp �
100.

Figure 6 shows the initial conditions used to generate the
three types of spatiotemporal patterns and snapshots of the
instantaneous transversal reactor temperature at five instances
(marked as a–e on the reactor effluent temperature time series
shown in Figure 7). The times at which the snapshots shown in
Figure 6 were taken are reported in Table 2. The first mode
leads to a band pattern (�). In this case, a high-temperature
pulse forms near the boundary. A high-temperature band trav-
els across the reactor cross section until it reaches a diametri-
cally opposite point on the reactor boundary and captures the

Figure 6. Snapshots of the temperature at times marked
as a–e in Figure 7 during band pattern (�),
antiphase (��), and targets (�) motions.
The initial condition leading to these are shown in the first
row (marked as I.C.). (Table 2 reports the snapshot times.)

Figure 5. Neutral stability curves for the first three trans-
versal modes in the R/dp vs. Da plane.
Inset: Branches of uniform steady states in the 
 vs. Da plane.
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whole cross section. During the second part of the period, a
low-temperature pulse forms that eventually captures the whole
surface. The second mode leads to antiphase oscillations (��).
Here, two high-temperature and two low-temperature zones
form at diametrically opposite locations. The high-temperature
(low-temperature) zones eventually expand and capture the
whole cross section at the instant denoted as c (e) in the reactor
effluent time series in Figure 7. The third mode generates a
target pattern (�). In this case, high-temperature rings emerge
near the boundary and travel to the reactor center until they
capture the whole cross section. During the second half of the
period, low-temperature rings form and eventually capture the
whole surface.

The temporal reactor effluent temperatures during the peri-
odic band, antiphase, target motions, and uniform oscillations
are shown in Figure 7 for the same set of parameters. The time
series of each period of the motions consists of a peak and a
quiescent section. The spatiotemporal motion is dominant dur-
ing the peak in the time series, whereas the reactor temperature
is similar to a uniform, extinguished state during the quiescent
section of the time series. Temporal temperatures of the band
and antiphase motions are very similar. The peak temperature
and conversion during the target motion were somewhat lower.
Periods of both the band and the antiphase motions are very
similar and of the order of 25,000. The period of the target
motion is somewhat shorter, of the order of 20,600. The period

of uniform oscillations is about 20,750. Several qualitative
features, such as the temporal effluent temperature or reactant
concentration, and the features of the spatiotemporal motions
obtained during the nonisothermal operation are very similar to
those obtained in the isothermal case. The period of the spa-
tiotemporal motions in the nonisothermal case is about three-
fold longer than that in the isothermal case.

It is very difficult to identify and determine the dynamic
features of the spatiotemporal motions from inspection of the
sequence of temporal patterns. This identification can be sim-
plified by using principal-component analysis (PCA) to de-
compose the spatiotemporal patterns into orthogonal time-
independent spatial modes (or principal modes) and time-
dependent amplitudes.47 This procedure provides an objective
method for learning about the underlying dynamics in space
and time and has been successfully applied to the analysis of
spatiotemporal patterns on catalytic surfaces.9,48-50 In this pro-
cedure, the spatiotemporal data u(�, , �) are represented by
the series

u��, , �� � 
i�1

N

�i����i��, � (46)

where �i(�) represents orthogonal time-dependent amplitudes
and �i(�, ) represents spatial modes. Thus,

��i��, � � �j��, �� � �ij (47)

�i����j��� � �i�ij (48)

The �i(�, ) values are determined from s snapshots of the
temporal patterns; specifically these modes are the eigenvectors
of the eigenvalue problem

��i��, � � �i�i��, � (49)

where the autocorrelation matrix

� �
1

s 
i�1

s

u��, , �i�u���, ��, �i� (50)

and �i reflects the energy corresponding to a particular spatial
mode �i(�, ), that is, the fractional contribution of a specific
mode to the dynamics of the pattern. The amplitudes �i(�) are
the projections of the data set u(�, , �) on �i(�, ), that is,

Table 2. Times at Which the Snapshots Shown in Figure 6
Were Taken

� �� �

a 0 0 0
b 8607 8598 8728
c 9169 9080 9193
d 9962 9867 9704
e 14,090 13,665 13,721

Figure 7. Temporal effluent temperature ��� during band
pattern (�), antiphase (��), and targets (�) mo-
tions at Da � 0.09.
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�i��� � 
i�1

s

u��, , �i��i��, � (51)

The principal component analysis routine in Matlab® 51 was
used to conduct this analysis.

The first two principal modes of all three motions captured
more than 95% of the energy associated with the pattern. Thus,
we present in Figure 8 only the temporal amplitudes of these
two principal modes. The two principal modes had the same
period of oscillation, that is, had the same oscillation fre-
quency. The temporal amplitudes capture the main feature of
the time series shown in Figure 7—the existence of a peak
followed by a quiescent period.

The contours of the first two PCA modes and the corre-
sponding phase plot of their amplitudes for the three patterns
are shown in Figure 9. (We placed a black rim at the circum-
ference of the PCA mode contours to mark its area.) They are
of the motions described in Figures 6 and 7. The two principal
modes of the band pattern, shown in Figure 9, have the qual-
itative features of the first transversal mode. Similarly, the two
principal modes of the antiphase motion have the same features
as those of the second transversal mode. The two modes are
�/2 rotation of each other. The first principal mode of the
targets has three zones: high (hot), low (cold), and high (hot) in
that order starting from the center (� � 0) of the reactor. This
spatial profile is similar to the ninth transversal mode. The
second principal mode has two zones, high (hot) and low
(cold), which is similar to the third transversal mode.

The marks of “a” to “e” on the phase plots in Figure 9
correspond to the marked states in Figure 7. Inspecting these
points indicates the relative contribution from the first two
modes to the temperature snapshots in Figure 6. The ampli-
tudes of the first two modes remained unchanged for a long
time at the sharp tip on the phase plot (�). This tip point
corresponds to the long quiescent period during which the
reactor remains at an extinguished state. The rich spatiotem-
poral dynamics during the peak in Figure 7 is reflected by the
looping of the amplitudes in the phase plot. This fast looping
followed by a long sojourn next to a point on the phase plot is
a typical behavior of a homoclinic cycle.52,53 Although the
temporal snapshots of the three motions are qualitatively very
different, they all exhibit homoclinic motion. The homoclinic
nature of these motions is responsible for the rather long period
of oscillation. This predicted feature was observed experimen-
tally during CO oxidation.9

Discussion and Conclusions

Previous studies were able to predict stationary hot zone
formation in a packed-bed reactor only by making the unreal-
istic assumption that the transversal heat dispersion in the
reactor is smaller than that of the limiting reactant.
Viswanathan et al.24 proved that a pseudo-homogeneous model
of a shallow adiabatic packed-bed reactor cannot predict a

Figure 9. First two principal modes of the PCA and the
phase plane of the corresponding temporal
amplitudes for band pattern (�), antiphase
(��), and targets (�).
Points a–e correspond to those in Figure 7. White � high,
black � low.

Figure 8. Temporal amplitudes of the first two principal
modes of the PCA for band pattern (�), an-
tiphase (��), and targets (�).
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bifurcation to a stable stationary, transversal, nonuniform state
under the practical condition that the transversal heat disper-
sion in the reactor exceeds that of the limiting reactant. This
conclusion was proven for reactions whose rate depends only
on the surface concentration of the limiting reactant and tem-
perature. Our study shows that the reaction kinetics has a major
influence on whether stable, transversal, spatiotemporal hot
zones can be predicted to exist in a uniformly active shallow
packed-bed reactor under the realistic condition that the trans-
versal heat dispersion in the reactor exceeds that of the limiting
reactant. This insight is of both fundamental and practical
importance and is an important step toward gaining an under-
standing of the formation of transversal hot zones in packed-
bed reactors.

Our simulations and analyses are for a catalytic reaction, the
rate of which may exhibit isothermal rate oscillations. Several
mechanisms and rate expressions proposed in the literature can
predict such a behavior.26-36 Ertl’s research group26 proved that
this type of oscillations may occur during ultralow-pressure CO
oxidation. All these rate expressions are more detailed and
intricate than those used in traditional reactor design models.
We use in this study one of these rate expressions. Our success
in finding the spatiotemporal states hinged on our ability to
predict the neutral stability curve and the corresponding modes.
Without this knowledge, the simulations tend to lead to the
uniform oscillatory states. The prediction of the transversal hot
zones requires knowledge of the detailed reaction rate expres-
sion. Our study suggests that prediction of the hot spots may
require models that are more detailed than those used in the
reactor design. An important intriguing question is what other
reaction rate expressions and reaction networks can generate
transversal hot zones.

Our study indicates that essentially a very large number of
different patterns may be generated for a sufficiently large
reactor diameter. Each of these states has a rather limited
region of attraction. It is highly conceivable that when many
different stable, spatiotemporal states can form for a specific
set of parameters, small perturbations will cause a shift from
one to the other. This may lead to formation of a chaotic
attractor with a region of attraction larger than that of the
individual states.

One of the surprising findings of experimental studies in
shallow packed-bed reactors is the rather long period of the
oscillations (order of hours).9,10 The homoclinic nature of the
motion, revealed by the PCA of our simulations, is responsible
for this unexpected long period, which has also been observed
experimentally. The rather slow oscillations in the isothermal
case indicate that the reaction kinetics—and not the thermal
dispersion time constant—is the main reason for the long
period of oscillations. This finding differs from what has been
previously assumed.

The qualitative features of the three motions are rather
different. Yet, the period of their motions and the correspond-
ing reactant effluent concentrations were very close to each
other and to those of the uniform oscillatory state. This is a
rather surprising finding for which we have not yet found an
answer.
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Notation

av � catalyst-specific surface area, msurf
2 /m3

A � constant coefficient for initial conditions in Eq. 27
� � amplitudes of the principal modes
� � autocorrelation matrix, defined by Eq. 50

�� � antiphase
c � dimensionless concentration, defined by Eq. 5
C � concentration, mol/m3

Cp � specific heat capacity, J kg�1 K�1

dp � particle diameter, m
D � species diffusion coefficient, m2/s

Da � Damköhler number, defined by Eq. 15
�u� � first Fréchet derivative

E � activation energy, J/mol
� � vector of steady-state equations

�1 � dimensionless rate of adsorption of A, defined by Eq. 12
�2 � dimensionless rate of adsorption of B, defined by Eq. 14

h � interfacial heat transfer coefficient, W K�1 m�2

� � Hopf bifurcation
J � Bessel function of first kind
k � adsorption or reaction rate constant
L � length of the reactor, m
	 � linearized matrix

Le � Lewis number, defined by Eq. 5
M � adsorption capacity, mol/msurf

2

N � radial grid points
Nc � dimensionless adsorption capacity, defined by Eq. 5
P � period of oscillations
� � transversal perturbation matrix

Pe � Peclet number, defined by Eq. 5
r � radial coordinate, m
R � radius of the reactor, m
R� � universal gas constant, J mol�1 K�1

� � dimensionless reaction rate, defined by Eq. 13
s � number of snapshots
t � time, s

tP � period of oscillations, s
T � temperature, K
� � targets

� � traveling wave
u � vector of state variables
� � uniform stationary

�
 � uniform oscillatory
v � superficial fluid velocity, m/s
x � fractional surface coverage of species A
y � fractional surface coverage of species B
z � axial coordinate, m

Greek letters

� � adiabatic temperature rise, defined by Eq. 5
� � dimensionless activation energy, defined by Eq. 15
� � Kronecker delta function
� � bed voidage
	 � dimension axial coordinate, defined by Eq. 5

 � dimensionless temperature, defined by Eq. 5
�� � effective thermal conductivity, W m�1 K�1

�� sg � thermal conductivity, W m�1 K�1

� � eigenvalue of autocorrelation matrix
� � surface coverage factor

�mn � transversal eigenmodes
� � dimensionless radial coordinate, defined by Eq. 5
� � density, kg/m3

� � coefficient of imaginary eigenvalue
� � dimensionless time, defined by Eq. 5
�r � residence time, s
� � principal mode
 � azimuthal coordinate
� � eigenvector of principal component analysis
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� � eigenvector
�mn � transversal perturbation vector, defined by Eq. 20

��H � heat of the reaction, J/mol
�P � percentage period change, defined by Eq. 40
� � matrix of eigenvectors �

Others

�2 � Laplacian in polar coordinates
� � � � spatially averaged quantity

Superscripts

h � heat
m � mass

Subscripts

a � axial
A � species A
B � species B
g � gas phase
i � imaginary

in � inlet
m � azimuthal mode number
n � radial mode number

� � nonisothermal
r � real
s � solid

ss � steady state
� � transversal
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