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Transversal hot zones have been observed in many industrial and laboratory reactors.
Yet, previous models which utilized rate expressions that depended only on the temper-
ature and concentration of the limiting reactant failed to predict formation of stable hot
zones. We previously proved that pseudohomogeneous models of a uniformly active
shallow adiabatic packed-bed reactor cannot predict a bifurcation to stable hot zones
when the transversal heat dispersion is larger than that of the species, and the reaction
rate depends only on the temperature and concentration of the limiting reactant. We prove
here that the same is true also for a two-phase model of a uniformly active shallow,
adiabatic packed-bed reactor. It is shown that a shallow reactor model, which uses more
detailed kinetic expression, may attain stable, transversal hot zones. © 2005 American
Institute of Chemical Engineers AIChE J, 52: 1533-1538, 2006
Keywords: shallow packed-bed reactor, two-phase model, hot zones, transversal temper-
ature pattern, stability

Introduction

Transversal (perpendicular to the flow direction) hot zones
have been reported to form in packed-bed reactors. Bores-
kov et al.1 observed hot zones in a large diameter packed-
bed reactor during the partial oxidation of isobutyl alcohol.
Barkelew and Gambhir2 reported that small aggregates of
molten catalyst pellets (clinkers) were generated during the
hydrodesulfurization of crude oil. Moving hot spots formed
on Pt-Rh gauzes during the synthesis of hydrogen cyanide
and ammonia oxidation to NO. Wicke and Onken3,4 ob-
served a transversal hot region in a laboratory packed-bed
reactor. Various types of transversal hot regions were ob-
served in a shallow packed-bed reactor by Marwaha et al.5,6

and on a catalytic glass fiber cloth by Digilov et al.7 Trans-
versal hot regions have a deleterious impact on the reactor
performance and may pose severe safety hazards when
present next to the reactor wall.

Several investigators attempted to explain and predict the
formation of transversal hot regions in commercial packed-
bed reactors. For example, Jaffe8 showed that internal ob-
struction may cause hot spot formation in trickle-bed reac-
tors. Boreskov et al.1 showed that nonuniform packing of the
bed can generate local hot zones. Subramanian and Balako-
taiah9 (and references, therein) showed that, at rather low-
feed rates, the temperature dependence of the fluid proper-
ties may generate spatiotemporal flow and temperature
patterns in packed-bed reactors. Sundarram et al.9 have
shown that global coupling can lead to formation of hot
zones on the top of a packed-bed reactor. We do not address
here transversal temperature nonuniformities generated ei-
ther by nonuniform packing or by variation in fluid proper-
ties with temperature or concentration, or by global cou-
pling. We consider here transversal hot zone formation in a
uniformly active adiabatic packed-bed reactor. Balakotaiah
et al.10 reported that stationary transversal hot zones may
form in adiabatic packed-bed reactors when the axial dis-
persion of the limiting reactant exceeded that of heat. This
condition is analogous to the evolution of a Turing pattern11

in reaction-diffusion systems, that is, that the diffusion
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coefficient of an inhibitor exceeds that of the autocatalytic
variable.12 However, as pointed out by Yakhnin and Menz-
inger13 this condition is not satisfied in packed-bed reactors.

The goal of our study was to determine whether the failure
of previous modeling attempts to predict the formation of
stable transversal hot zones in a uniformly-active adiabatic
packed-bed reactor was caused by the choice of unsuitable
kinetic parameters or unsuitable model. Simulations of
Viswanathan et al.15, using a pseudohomogeneous model of a
uniformly active shallow, adiabatic packed-bed reactor,
showed that stationary stable nonuniform states exist on a
branch of nonuniform states that emanates from a stable uni-
form state. They proved that, for a two dynamic-variables
pseudohomogeneous model, under the practical condition that
the transversal heat dispersion is larger than that of the species,
such a bifurcation cannot occur using a kinetic model which
depends only on the temperature and reactant concentration
(such as an nth order reaction). That analysis explained the
failure of previous simulations to predict stable, transversal hot
zones using realistic parameters.13 Moreover, numerical calcu-
lations by Viswanathan et al.15 showed that a two-phase model
of a shallow adiabatic packed-bed reactor also cannot predict
stable transversal hot zones in those cases. We present here a
proof of those observations and explain the changes that need
to be made in the model so that it can predict observed
spatiotemporal transversal temperature patterns.

Two-Phase Model of a Shallow Adiabatic Packed
Reactor

We consider the two-phase model of an adiabatic packed-
bed reactor
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and �(�s, xf) is the reaction rate. The subscripts f and s refer
to the fluid and solid phases, respectively. For example, for a
first-order reaction
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The corresponding boundary conditions are
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The simulations and stability analysis of the three-dimensional
(3-D) model of the packed-bed reactor are very cumbersome
and lengthy. Thus, we consider here a model of a shallow
reactor (that is, one that is uniform in the axial direction),
which is obtained by a Liapunov-Schmidt reduction16 of the
full model. Balakotaiah et al.17 used a similar approach in their
study of pattern formation in a shallow monolith reactor. The
shallow reactor model is
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Details of the reduction procedure are reported by
Viswanathan18. The corresponding boundary conditions are
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A homogeneous (one with no transversal variation) steady-
state solution (�f, xf, �s)ss of the shallow reactor model (Eq.
9–12) is stable with respect to homogeneous perturbations only
if all the eigenvalues of the Jacobian
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have a negative real part. We denote in Eq. 13 and, hereafter,
by �xf

and ��s
, the partial derivatives (��/� xf)�(�f, xf,�s)ss

and
(��/��s)�(�f, xf,�s)ss

. We prove in Appendix I that for this model,
a Hopf bifurcation cannot exist if
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is satisfied. When det(�2) � 0, all the coefficients of the
characteristic polynomial (Eq. A1) are negative. Thus (due to
the Descartes’ Rule of Signs) all three (real) eigenvalues of �2

must be negative. Hence, condition (Eq. 14) is the necessary
and sufficient condition for stability of the uniform solutions
with respect to uniform perturbations.

To find when nonuniform states may evolve in a shallow
reactor, we subject the uniform steady-state solution to small
nonuniform spatial perturbations
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A stable uniform steady-state solution (of the shallow reactor
model) becomes unstable to nonuniform perturbations (Eq. 15)
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Following substitution of (�1 	 �xf
) from Eq. 14 in Eq. 19,

we define a modified determinant
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Condition (Eq. 17) for loss of stability due to nonuniform
perturbations can be rewritten as
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Condition (Eq. 22) may be rewritten as
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(A detailed derivation of Eq. 25 is presented in Viswanathan
and Luss.19) ���

f , the ratio between the transversal fluid phase
heat to mass dispersion, is of order 1. The heat conductivity of
solid phase is much larger than that of the fluid phase that is,
���

h � (1 � �)s,�/(�f,�) 

 1. Hence, in packed-bed
reactors ���

s 

 1. For a stable uniform steady state, both
det(�2) (Eq. 14) and the modified determinant � (Eq. 20) are
negative. The rate of most chemical reactions increases mono-
tonically with solid phase temperature, that is, ��s


 0. In all
these cases, the lefthand side of Eq. 25 is negative definite, and
that condition can be satisfied only if ���

s � 1. However, as
���

s 

 1, we conclude that a bifurcation from a stable
uniform state to a stationary, nonuniform state cannot be
predicted by a two-phase model of a shallow, adiabatic reactor
in which the reaction rate depends only on the surface tem-
perature and concentration of the limiting reactant. Such a
bifurcation can occur only if we make the unrealistic assump-
tion that ���

s � 1.

Conclusions and Remarks

The proof about the shallow two-phase model complements
that by Viswanathan et al.15 for the pseudohomogeneous
model. Together, they lead to the important conclusion that
adiabatic packed-bed reactor models (both the pseudohomoge-
neous and two-phase models) do not predict, for realistic
dispersion values, a bifurcation from a stable uniform state to
one with a stationary nonuniform transversal temperature using
a rate expression which depends only on the surface tempera-
ture and limiting reactant concentration, such as an nth order
rate expression. Viswanathan et al.15 observed that stable states
with nonuniform transversal temperature formed only on
branches of solutions that bifurcated from a stable uniform
state. This suggests that neither one of the two models can
predict evolution of a stable nonuniform temperature pattern.
This raises the question of how to reconcile the many reported
findings of local hot zones in adiabatic packed-bed reactors
with these findings. We believe that this quandary is caused by
the use of oversimplified kinetic expressions, and that use of
more detailed rate expression is needed to enable prediction of
hot zone evolution. For example, Viswanathan and Luss20

recently reported that spatiotemporal transversal patterns may
be predicted by a model of a shallow, adiabatic packed-bed
reactor using a rate expression that can lead to isothermal
oscillations. These rate expressions usually depend in addition
to the surface concentration of a limiting reactant and temper-
ature on other variables such as sub-surface reactant concen-
tration, temporal activity of the surface, and so on. An example
of such a rate expression is that for CO oxidation.21,22 We
conclude that common packed-bed reactor models fail to pre-
dict the formation of local hot spots in an adiabatic packed-bed
reactor when using the common two variables rate expressions.

However, using more detailed rate expressions may enable
them to predict formation of spatiotemporal temperature pat-
terns.
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Notations

av � specific surface area, m2/m3

C � concentration, mol/m3

Cp � specific heat capacity, J/(kg.K)
det � determinant

D � species diffusion coefficient, m2/s
� � modified determinant, defined by Eq. 20

Da � Damköhler number
E � activation energy, J/mol
h � interfacial heat-transfer coefficient, W/(K.m2)
� � identity matrix
J � Bessel function of first kind
k � interfacial mass-transfer coefficient, m/s

k� � intrinsic reaction rate constant, 1/s
� � constant, defined by Eq. 21
L � reactor length, m
� � first Fréchet derivative

Le � Lewis number, defined by Eq. 4
�f � ratio of transversal fluid phase heat to mass dispersions
�h � ratio of transversal solid phase heat to fluid phase heat conductiv-

ities
�s � ratio of transversal solid phase heat to fluid phase mass dispersions
�2 � transversal perturbation matrix
Pe � Peclet number, defined by Eq. 4

prod � product, defined by Eq. A2
r � radial coordinate, m
R � reactor radius, m
� � dimensionless reaction rate
R� � universal gas constant, J/(mol.K)

Sth � Stanton number for heat, defined by Eq. 4
Stm � Stanton number for mass, defined by Eq. 4

T � temperature, K
� � coefficients, defined by Eqs. A8 – A10
tr � trace
v � linear velocity, m/s
x � conversion, defined by Eq. 4
z � axial coordinate, m

Greek

	 � adiabatic temperature rise, defined by Eq. 4
� � dimensionless activation energy, defined by Eq. 4
� � density, kg/m3

� � bed voidage
� � dimensionless axial coordinate
� � dimensionless temperature, defined by Eq. 4
 � thermal conductivity,
� � transversal eigenmode number

 � dimensionless radial coordinate
� � eigenvalue
� � dimensionless time, defined by Eq. 4
� � azimuthal coordinate
� � imaginary coefficient of eigenvalue defined in Eq. A3
�i � ith component of nonuniform perturbation

��H � heat of the reaction, J/mol

Subscripts

a � axial
f � fluid phase

in � inlet
m � azimuthal mode number
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n � radial mode number
s � solid phase

ss � transversally uniform steady state
�� � two-phase

� � transversal

Superscripts

h � heat
m � mass

	� � shallow reactor
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Appendix I

Condition for the existence of a Hopf Bifurcation

The eigenvalues of �2 are the solutions of the characteristic
polynomial

det��2 � ��� � ��3 � tr��2��
2 � prod��2�� � det��2� � 0
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where � is the identity matrix, tr(�2) the trace of �2, det(�2)
defined by Eq. 14, and
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A Hopf bifurcation from a uniform steady state of the shallow
reactor model (Eq. 9–12) occurs when a pair of complex
eigenvalues of �2 (Eq. 13) crosses the imaginary axis. At the
Hopf bifurcation point, a pair of complex eigenvalues

� � �i� (A3)

is the (nontrivial) solution of

�i�3 � tr��2��
2 � prod��2�i� � det��2� � 0 (A4)

Separating the real and imaginary parts, for the unique non-
trivial solution for �, condition (Eq. A4) reduces to

det��2� � tr��2�prod��2� � 0. (A5)

After eliminating (�1 	 �xf
) using the expression for det(�2)

in Eq. 14, a sequence of algebraic manipulations leads to
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Using A6-A7, Eq. A5 may be rewritten in terms of det(�2) as

�1det��2�
2 � �2det��2� � �3 � 0 (A8)

where
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(A detailed derivation of Eq. A8 is presented in Viswanathan
and Luss19). Equation A8 is the condition for a Hopf bifurca-
tion to occur in a shallow, adiabatic packed bed reactor de-
scribed by a two-phase model (Eqs 9–12) with any kinetic
model �(�s, xf).

det(�2) � 0 on both the ignited and extinguished
branches. For most kinetic models the reaction rate increases
monotonically with the solid phase temperature, that is, ��s


 0. For ��s

 0 and any practical set of parameters �1


 0, �2 � 0 and �3 
 0 (Eqs. A8 – A10). Therefore, when
det(�2) � 0 the lefthand side of Eq. A8 is positive definite
while the righthand side is zero. Thus, a Hopf bifurcation
cannot occur on either the ignited or extinguished branch of
the two-phase model of a shallow, adiabatic packed-bed
reactor described by Eqs 9 –12. However, a Hopf bifurcation
may occur from a uniform unstable steady-state at which
det(�2) 
 0.
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