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Transversal (normal to the flow direction) hot zones have been reported to form in packed-bed reactors.
While hot zones may form due to local nonuniformities in the local activity or porosity, they may form also
in a strictly uniform reactor for certain classes of reaction kinetics. For example, they are predicted to form
in an adiabatic packed-bed reactor using realistic parameters when the catalytic reaction rate oscillates under
some constant ambient conditions. Qualitatively different hot zones may form in the bed for the same set of
parameters. A systematic procedure is outlined to predict the set of parameters for which such spatiotemporal
temperature patterns may form. Dynamic simulations of a 2-D long packed-bed reactor model (one that ignores
the azimuthal dependence) reveal the existence of complex periodic motions (period-2, -4, -8) as well as
chaos. The transversal features of these periodic motions resemble those of several transversal modes predicted
by the linear stability analysis. Spatial snapshots of the chaotic motion strongly suggest that it was caused by
modulation and juxtaposition among motions corresponding to different modes.

Introduction

The formation of local transversal (normal to the flow
direction) hot zones in adiabatic packed-bed reactors may
decrease the yield of the product, deactivate the catalyst, or
initiate undesired highly exothermic reactions, leading to a
potential runaway. The presence of hot zones next to the reactor
wall may decrease its strength and induce a crack. The
subsequent leak of the reactants can lead to an explosion. Several
trickle-bed reactor explosions have been attributed to the
presence of such local hot zones. Hot zones have been observed
in both industrial and laboratory packed-bed reactors. Boreskov
et al.1 and Matros2 observed several azimuthally nonsymmetric
hot zones at the cross section of the top of a packed-bed reactor
in which the partial oxidation of isobutyl alcohol was conducted
using a copper catalyst. Barkelew and Gambhir3 reported clinker
formationssmall lumps of molten catalystsduring hydrode-
sulfurization in trickle-bed reactors. Jaffe4 reported hot-spot
formation during a hydrogenation reaction. Wicke and Onken5,6

observed a transversal temperature nonuniformity in a laboratory
packed-bed reactor during the oxidation of CO. Intricate
spatiotemporal, transversal temperature patterns were observed
using infrared imaging on top of a shallow packed-bed reactor7,8

and on the external surface of a radial-flow reactor.9,10 Quali-
tatively similar complex hot-zone motions were observed by
Digilov et al.11 on a catalytic glass fiber cloth reactor and by
Digilov et al.12 on the surface of a thin annular catalytic shell.
Sundarram et al.13 pointed out that global coupling between the
effluents and the top of the reactor affected these temperature
patterns.

Local hot spots may form in packed-bed reactors due to the
nonuniformity of the catalyst activity or of the packing of the

bed, as reported by Matros.2 Other potential causes can be local
obstruction of the flow,4 hydrodynamic instabilities,14,15or global
coupling caused by interaction between the top of the reactor
and the mixed effluents13,16 or between the reactants and the
surface of a thin cylindrical catalytic reactor.12,17

There have been several related attempts to predict formation
of hot zones in a uniform packed-bed reactor, that is, one in
which the porosity and activity are the same throughout the
whole bed. Schmitz and Tsotsis18 predicted that stationary
temperature patterns may form in a chain of interacting catalyst
pellets when the species exchange exceeded that of heat.
Balakotaiah et al.19 showed that temperature patterns may form
in an adiabatic packed-bed reactor used to conduct an exother-
mic bimolecular reaction with Langmuir-Hinshelwood kinetics,
if the rate of the transversal species dispersion exceeds that of
the heat dispersion. However, Yakhnin and Menzinger20 pointed
out that in packed-bed reactors the dispersion of heat is larger
than that of the species. Sheintuch’s group has shown that stable
2-D hot regions may form on the external surface of a thin
cylindrical catalytic shell when the reactants flow along its
surface, using a model that accounted also for global interac-
tion.12,17These nonuniform azimuthal surface temperatures are
different from the 3-D hot zones that exist at different radial
and azimuthal positions in a cross section of a packed bed and
are not influenced by global coupling.

We recently initiated a study in which models of an adiabatic
packed-bed reactor can predict the formation of a stable
temperature pattern. We were able to prove21,22 that, when the
reaction rate depends only on the surface concentration of the
limiting reactant and temperature, common models of a shallow
adiabatic packed-bed reactor cannot predict bifurcation to a
stable, stationary temperature pattern, if they account for the
fact that the transversal dispersion of heat exceeds that of the
reactants. We then showed that the formation of stable hot zones
in a uniform, shallow adiabatic packed-bed reactor is sensitive
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to the kinetics of the reactions.23 For example, spatiotemporal
temperature patterns may form in a shallow adiabatic packed-
bed reactor using realistic parameters when the rate of the
catalytic reaction oscillates under constant ambient conditions.
Various tested rate expressions, such as those describing CO
oxidation, exhibit this feature. Asakura et al.24 described reaction
mechanisms that can lead to isothermal concentration oscilla-
tions on catalytic surfaces. We extend here the investigation of
hot-zone formation and dynamics in a shallow packed bed to
the more realistic case of a long adiabatic packed-bed reactor.

Mathematical Model

We consider an adiabatic packed-bed reactor in which the
following reaction takes place:

We assume that the reaction proceeds by a Langmuir-
Hinshelwood mechanism

Species A and species Bswhich is in large excess in the feeds
adsorb on the active free sites S. We assume that the product
(AB) immediately desorbs from the catalyst surface soon after
it forms. Following Slinko and co-workers,25-27 we assume that
the reaction rate constantk3 depends on the fractional surface
coverage of species B,yB. This reaction exhibits isothermal
oscillations for some kinetic parameters. A kinetic model27 of
this reaction, which includes a minimal number of parameters,
is

where yA is the surface coverage of species A,x is the
conversion of species A, andθ is the dimensionless temperature.
The expressions describingG1, the net rate of adsorption of A;
G2, the net rate of adsorption of B; andR, the reaction rate per
unit surface area of the catalyst, are as follows:

whereµ is the fractional surface coverage factor. The dimen-
sionless variables and parameters are

CA,in, CB,in, and Tin are the feed concentrations of species A
and B and the feed temperature, respectively. A detailed
discussion of this class of kinetic models that assumes a simple
Langmuir-Hinshelwood mechanism and a slow variation in the
catalytic activity are discussed in detail in the monograph by
Slinko and Jaeger.28 The kinetic parameters of this type of model
that describe the oscillatory rate of CO oxidation have been
reported by Slinko et al.29

We describe the reactor by a pseudo-homogeneous
model that accounts for the adsorption of the reactants
from the fluid phase to the catalyst sites, and in which the
heat dispersion is larger than that of the species. We assume
that the physical properties are independent of the temperature
and species concentration. The conversion of the gaseous
reactant A and the dimensionless temperature satisfy the
equations

where∇⊥
2 is the Laplacian in polar (ê, φ) coordinates. The

dimensionless variables and parameters are

whereM is the surface adsorption capacity,D is the species
dispersion, andλh is the effective thermal dispersion. The
transversal heat and species dispersion coefficients (λh⊥ andD⊥)
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differ from those in the axial direction (λha and Da). The
corresponding boundary conditions are as follows:

Viswanathan and Luss23 have shown that, for this reaction,
spatiotemporal transversal temperature patterns may form in a
shallow adiabatic packed-bed reactor. We obtained bounds on
the range of parameters for which transversal hot zone may exist
using linear stability analysis to determine when a stable,
uniform state becomes unstable with respect to nonuniform
perturbations.

Linear Stability Analysis

The procedure we used to determine the parameters at which
a stable, uniform state of a long reactor becomes unstable to
nonuniform perturbations is an extension of the one used to
predict this stability shift in a shallow reactor.23 The procedure
is similar but more intricate as the 1-D base steady-state solution,
which ignores the transversal dependence in a long reactor,
uss(η) ) (yA,yB,x,θ)ss, is nonuniform. We briefly sketch the
procedure here. A steady state is stable to homogeneous
perturbations when all the eigenvalues of its Jacobian have a
negative real part. At a limit point, a real eigenvalue crosses
the imaginary axis. A Hopf bifurcation occurs when a pair of
eigenvalues crosses the imaginary axis at a nonzero speed. At
a supercritical Hopf bifurcation point, a stable (transversally
uniform) periodic solution emerges from a stable, transversally
uniform 1-D steady state.

At a neutral stability point, a 1-D base state becomes unstable
to spatially inhomogeneous perturbations

wherem and n are the radial and azimuthal mode numbers.
eimφ and Jm, the Bessel function of the first kind, are the
azimuthal and radial eigenfunctions (of the transversal operator),
and ω(η) ) ωr(η) ( iωi(η) are the complex eigenvectors.
Because of the no-flux boundary conditions,Jm is real30 and
µmn, the transversal eigenmode numbers, are the solutions of19

The first nine values ofµmn are presented in Table 1, and a
schematic of the corresponding first six modes is presented
elsewhere.21

Linearization of the model equations (eqs 3, 4, 9, and 10)
around the 1-D base state and subjecting it to the spatially

inhomogeneous perturbations (eq 15) leads to the following
eigenvalue problem

whereω(η) ) (ω1,ω2,ω3,ω4) andσ is the complex eigenvalue
at the Hopf bifurcation.σi and 2π/σi provide an estimate of the
frequency and time period of the oscillations next to the
bifurcation point. An oscillatory neutral stability point is found
by a simultaneous solution of the 1-D transversally uniform
steady-state problem (eqs 3, 4, 9, and 10 in which the transversal
Laplacian operator is deleted) and this eigenvalue problem (eqs
17-22).

A 1-D base steady state (uss(η)) in an adiabatic reactor is
transversally uniform due to the no-flux boundary conditions.
At very large values ofR/dp, the transversalPe is very large,
and therefore, the transversal terms (µmn

2/Pe⊥
m andµmn

2/Pe⊥
h) in

eqs 19 and 20 become negligible. Thus, near the Hopf
bifurcation point at a very largeR/dp, the bifurcation parameter
Da at which eqs 17-22 are satisfied approaches that of the
Hopf bifurcation of a transversally uniform 1-D state. To
construct the neutral stability curve, we initially determine one
steady state (near the Hopf bifurcation point) that becomes
unstable to transversal disturbance at very largeR/dp. We then
use pseudoarc length continuation of the simultaneous solution
of eqs 3, 4, 9, and 10 and eqs 17-20 to construct the neutral
stability curve, which bounds the parameter region in which

Table 1. FirstNine Transverse Eigenmode Numbers Satisfying Eq 16

No. m n µmn No. m n µmn

1 1 1 1.8412 6 1 2 5.3314
2 2 1 3.0542 7 5 1 6.4156
3 0 1 3.8317 8 2 2 6.7061
4 3 1 4.2012 9 0 2 7.0155
5 4 1 5.3176
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the transversally uniform state is unstable to transversally
inhomogeneous perturbations.

All the numerical simulations were conducted using the
activation energies suggested by Slinko et al.29 for the adsorp-
tion-desorption steps. The adsorption-desorptionDa values
are those used by Ivanov et al.27 The kinetic and other
parameters used in all the simulations were

We used an axial heat dispersion of heat that was 5 times larger
than that of the mass, that is,

The bifurcation diagram of the 1-D base states is shown in
Figure 1d. The states on the middle unstable and the stable
ignited branches are so close that they cannot be distinguished
in the figure. A supercritical Hopf bifurcation exists on the
ignited branch (point H in Figure 1a) atDa ) 0.293. At the
Hopf bifurcation pointσi ) 0.001 561, which corresponds to
an oscillation period (2π/σi) of 4025 next to the bifurcation point.
Figure 1a shows the clusters formed by the first 400 eigenvalues
close to the limit point L. Parts b and c of Figure 1 are the
zoomed versions of the sections of parts a and b of Figure 1,
respectively. The eigenvalues spectrum consists of three clusters
(aroundRe(σ) ) -40 in Figure 1a, around-0.2 in Figure 1b,
and around 0 in Figure 1c), indicating that the dynamics of this
system are affected by the interplay between three different
characteristic time scales. At the limit pointswhere a real

eigenvalue crosses the imaginary axissa cluster of complex
eigenValueswith positive real parts exists (Figure 1c).

The ith mode is defined to be the one with theith smallest
transversal eigenmode number,µmn (solutions of eq 16). Figure
2 shows the neutral stability curves for the first 3 transversal
modes, the 9th, and the 15th. The 3rd (m ) 0, n ) 1, µmn )
3.8317), 9th (m ) 0, n ) 2, µmn ) 7.0155), and 15th (m ) 0,
n ) 3, µmn ) 10.1734) are the first three purely radial (no
azimuthal dependence) modes. The inset shows the distinct
nature of the curves for smallR/dp. The right-hand asymptote
of the neutral stability curves is at the Hopf bifurcation of the
transversally uniform state (Da ) 0.293 in Figure 2). However,
no Hopf bifurcation of the transversally uniform state exists
near the left asymptote. Each neutral stability curve is nested
in the (Da, R/dp) plane within the one with a smallerµmn. This
implies that different types of transversal hot zones may exist
for the sameDa. The number of these states increases for larger
R/dp.

Spatiotemporal Patterns

Numerical simulations of spatiotemporal patterns of the full
3-D reactor require extensive computer time and effort and are
difficult to present in a paper. Thus, as a first step, we conducted
and report here simulations of 2-D model, which can generate
the azimuthally symmetric transversal hot regions in the (η, ê)
plane. These simulations were conducted by using finite
differences in the axial and radial directions. We used 102 grid
points in the axial direction and between 50 and 100 grid points
in the radial direction. To circumvent the singularity at the center
(ê ) 0), the grid points were placed at the radial positionsêj )
(2j - 1)/(2N - 1), ∀ j ) 1, N.31 The dynamic simulations were
conducted using a linear implicit extrapolator (LIMEX).32,33The
1-D calculations were conducted using the LAPACK option.
The 2-D calculations were conducted using a sparse iterative
linear solver (GMRES/BiCGSTAB) that usually converged in
1-3 iterations. This discretized model is similar to a coupled-
cell network, wherein the cells are placed in an equally spaced
network of two dimensions. The cells communicate unequally
with their nearest axial neighbors because the convection is
unidirectional transport whereas the dispersion is bidirectional.

A transversal pattern is obtained only when the initial
conditions are within the domain of attraction of that state. The
set of initial conditions leading to the transversal nonuniform

Figure 1. (a) The eigen spectrum at the limit point in the planes ofIm(σ)
versusRe(σ). (b) and (c) are the corresponding zoomed versions of the
sections of the eigen spectrum in (a) and (b). (d) Bifurcation diagram of
the transversally uniform state in the planes of〈θexit〉 versusDa. H ) Hopf
bifurcation, L) limit point, solid lines) stable, and dashed line) unstable.

γ1 ) 0, γ-1 ) 10.4, γ2 ) 1.02, γ-2 ) 24.7,

Da1 ) 4.5× 10-4, L/dp ) 100

Da-1 ) 1.56× 10-5, Da2 ) 7.29× 10-4,

Da-2 ) 4.25× 10-7, µ ) 15 (23)

Le ) 1000, Nc ) 4000, γ3 ) 10.3, Pea
m ) 5.0L/dp,

Pea
h ) 1.0L/dp

Pea
m

Pea
h

)
λha/(FCp)g

Da
) 5.0 (24)

Figure 2. Oscillatory neutral stability curves for the first 3, 9th, and 15th
transversal eigenmodes in the planes ofR/dp versusDa. (Note: 3rd, 9th,
and 15th are the first three purely radial (no azimuthal dependence) modes.)
Inset: Zoomed version of a segment of the oscillatory neutral stability
curves.
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states was selected in a procedure similar to that prescribed by
Viswanathan and Luss.23 To attain a spatiotemporal state
corresponding to modesm andn, we start by selecting a set of
R/dp at aDa value slightly inside the corresponding (cup-shaped)
neutral stability curve. We use as initial conditions

whereussare the state variables of the unstable 1-D state at the
neutral stability point,ωr is the real part of the eigenvectors of
the eigenvalue problem in eqs 17-22, and A is a scalar
coefficient that scales the perturbations and was typically chosen
to be unity. When the state corresponding to the initial conditions
(eq 25) did not evolve into a spatiotemporal state, the perturba-
tions to the base (unstable) stateuss were scaled with another
value ofA in [0.01, 1.0]. After an initial transient, the simulation
usually converged to a sustained spatiotemporal motion. We
then used a sequence of dynamic simulations for slightly
perturbed parameters to predict spatiotemporal states at the
desired set of (Da, R/dp). As initial conditions corresponding
to different transversal modes can lead to different spatiotem-
poral motions, we restricted our simulations to those evolving
by use of the first azimuthally symmetric mode in eq 25.

Extensive numerical simulations were performed using this
procedure for the transversal parameters

(Note that the transversal dispersion of the heat is 3 times larger
than that of the mass.) We present here simulations obtained at
various â values andDa ) 0.214. The initial conditions
corresponded to the third transversal mode, which is the first
azimuthally symmetric mode.

A slow change of the bifurcation variableâ generated a
cascade of complex periodic motions (period-2, -4, -8), which
eventually led to formation of a spatiotemporal chaos. The time
series of the average exit temperature and exit conversion of
the period-2 motions (obtained forâ ) 0.50) are shown in parts
a and c of Figure 3, respectively. (Note that the dimensionless
time is scaled with respect toLe.) The first and the second rows
in part I of Figure 4 consist of 2-D snapshots of the spatiotem-

poral temperature and conversion patterns obtained during the
period-2 oscillations. The first three and the last four snapshots
correspond to the smaller (P1 in Figure 3a) and the larger (P2

in Figure 3a) peaks in the time series of the period-2 motion,
respectively. The dominant features of this motion are similar
to those of the third transversal mode predicted by the linear
stability analysis (m ) 0, n ) 1), which is the first azimuthally
symmetric mode with the smallest value ofµmn ) 3.8317.
Several higher modes exert a small influence on the spatiotem-
poral motion. While the impact of the higher modes are sup-
pressed in the temperature domain, their features are noticed in
the snapshots of the conversion (Figure 4, part I-m). In all the
period-2 motions that we simulated, the features corresponding
to the higher (nondominant) modes always exit the reactor
before the lower dominant ones, as can be observed from Figure
4, part I-m. The phase plane of the average exit conversion
versus the average exit temperature of the period-2 oscillation,
which consists of two loops, is shown in Figure 7a. The wiggles
in one of the loops are caused by the variations in the average
exit conversion because of the early exit of the features
corresponding to the nondominant higher modes. (These wiggles
are not noticeable in the average exit temperature and conversion
time series as they occur during a very short time span.)

A decrease ofâ caused a shift from a period-2 to a period-4
motion. The time series of the average exit temperature and
exit conversion of the period-4 (obtained forâ ) 0.47) motions
are shown in parts b and d of Figure 3, respectively. The
corresponding phase plane of the average exit conversion versus
the average exit temperature, which consists of four loops, is
shown in Figure 7b. Snapshots of corresponding spatiotemporal
temperature patterns are shown in part II of Figure 4. The
snapshots in the first row and the second row are taken during
the first and the second half of the period-4 motion. In each
half, a small peak and a large (temperature/conversion) peak
exist. During the small peak, a hot zone emerges, moves
downstream, and exits the reactor. During the large peak in the
first half of the cycle, a hot zone emerges at the wall at some
axial positionsin this case atη ≈ 0.4sand then grows and
captures the whole cross section of the reactor before rapidly
moving downstream and exiting the reactor. The features of
this hot zone are similar to those of the third mode, which is
the first azimuthally symmetric mode. During the large peak in
the second half of the cycle, one hot zone forms both at the
wall and at the center (atτ/Le ) 14.75). This feature is similar
to that of the ninth transversal mode (m ) 0, n ) 2), which is
the second azimuthally symmetric mode with the second
smallest value ofµmn ()7.0155). These hot zones grow, merge,
and then move downstream and exit the reactor. The periodic
modulation of the third and ninth transversal modes may have
been introduced by the period-doubling bifurcation to this
period-4 spatiotemporal pattern. The time period of the first half
and the second half of this motion are 8.5 and 9.5. Just as in
the case of the period-2 oscillations, the nondominant modes
contribute to the motion but are suppressed in the temperature
domain. Once again, the wiggles in the phase plane (Figure 7b)
are caused by the early exit of the motions generated by the
higher modes.

As â was decreased from 0.47 to 0.465, the period-4
transformed to a period-8 motion. The time series of the exit
temperature and the conversion time series are shown in parts
a and c of Figure 5, while the corresponding phase plane is
shown in Figure 7c. Representative snapshots of the corre-
sponding spatiotemporal temperature patterns are presented in
Figure 6 part I. The motion features switch from those similar

Figure 3. (a), (b) Average exit temperature,〈θexit〉, time series for period-2
and period-4 motions. (c), (d) Average exit conversion,〈xexit〉, time series
for period-2 and period-4 motions.

u(η,ê) ) uss(η) + Aωr(η)Jm(µmnê) (25)

R/dp ) 30, Pe⊥
m ) 30

(R/dp)
2

L/dp
, Pe⊥

h ) 10
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2
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(26)
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to those of the third (Figure 6g) and to those of the ninth (Figure
6, part I-i to part I-k) transversal modes. Upon the bifurcation
from period-4 to period-8, another temperature peak emerges
between each pair of temperature peaks existing in the period-4
motion. This peak corresponds to a transversally uniform state,
which, following its emergence, moves downstream and exits
the reactor. A snapshot corresponding to this state is shown in
Figure 6 part I forτ/Le ) 6.0.

As â is further decreased to 0.46, the spatiotemporal motion
becomes chaotic. The corresponding time series of the exit tem-

perature and the conversion are shown in parts b and d of Figure
5. Figure 7d shows the phase plane of the chaotic motion. Snap-
shots of some of the temperature patterns generated during this
spatiotemporal chaotic motion are shown in Figure 6 part II.
Because of the rich structure of states that evolve in this case,
we can show only some typical ones. The figure shows that
the chaotic motion is caused by nonlinear interaction and mod-
ulation among various azimuthally symmetric modes and their
coexistence. During the chaotic motion, one, two, or three hot
zones form at some axial and radial locations, coalesce, move
downstream, and exit the reactor. Next to every large peak in
the time series, a small one exists, which sometimes corresponds
to the motion of a transversally uniform state. This suggests
that the chaotic motion may be due to shifts from one type of
motion to another one.

An important feature that the simulations pointed out is that
the measurable variables at the reactor exit do not provide any
indication about the presence/absence of hot zones inside the
reactor. This point can be readily discerned from Figure 8, which
shows several projections of the phase plane for the period-2,
period-4, and period-8 motions. Figure 8a shows the phase plane
for the period-2 case of the instantaneous minimum versus
maximum temperatures inside the reactor. Figure 8d shows the
average exit temperature versus the instantaneous maximum
conversion. Parts b and e and parts c and f of Figure 8 show
similar phase plots for the period-4 and period-8 cases. As the
hot zone moves downstream, the maximum temperature can
exist at any one (or more) locations in the reactor. For example,
in parts a and d of Figure 8, at point A, the average exit
dimensionless temperature≈ 0.3, whereas the maximum
temperature≈ 1.76. A similar feature can be identified for the
maximum local conversion. Parts c and f of Figure 8 illustrate

Figure 4. Part I, Row 1: Temperature contours of the reactor at variousτ/Le during period-2motion. Part I, Row 2: Conversion contours of the reactor
at variousτ/Le during period-2motion. Part II: Temperature contours of the reactor at variousτ/Le during period-4motion.

Figure 5. (a), (b) Average exit temperature,〈θexit〉, time series for period-8
motion and chaos. (c), (d) Average exit conversion,〈xexit〉, time series for
period-8 motion and chaos.
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the same point for the period-8 motion. These two figures clearly
show that a hot zone with a very high temperature may exist
inside the reactor even when the spatial average exit temperature/
conversion is low. Thus, measurements of the spatial average
exit temperature/conversion may not enable detection of a hot
zone with a very high temperature within the reactor.

Discussion and Conclusions

Until recently, mathematical models were not able to predict
the observed transversal hot zones formation in uniformly

packed and active packed-bed reactors, while accounting for
the fact the heat dispersion exceeds that of the reactants.20

Neither can the simulations of transversal temperature patterns
on the external surface of a thin catalytic cylindrical shell by
Sheintuch’s group12,17predict the formation of hot zones in the
cross section of an adiabatic packed-bed reactor, let alone their
size and shape.

Viswanathan and Luss23 showed that spatiotemporal patterns
may be predicted to form in a shallow packed-bed reactor if
the reaction can attain an oscillatory rate. This study shows that
realistic reactor models may predict transversal hot zone
formation also in long reactors used to conduct reactions having
an oscillatory rate. Our analysis is based on the use of a pseudo-
homogeneous model. The use of a two-phase model may lead
to some quantitative changes but is not expected to change the
fact that stable hot zones may exist for parameters bounded by
the neutral stability curve. It is still an open question if and
which other reaction mechanisms may predict this formation
of transversal hot zones. Heat loss from the reactor walls and
other kinetic reaction mechanisms (not necessarily oscillatory
ones) are expected to generate other types of hot zones.

The numerical determination of the neutral stability curve is
rather simple. The selection of initial conditions that are within
the attraction domain of a stable state having transversal hot
spots is more intricate, as a large fraction of the possible initial
conditions will lead to a transversally uniform oscillatory state.
Each neutral stability boundary is nested within that of a lower
mode, that is, the one form ) 0, n ) N is nested within those
for m ) 0, n ) N - 1. The numerical simulations of the 3-D
model require extensive computer time and effort and are
difficult to present in a paper. Thus, we restricted our dynamic
simulations to the finding of transversal hot zones that are

Figure 6. Part I: Temperature contours of the reactor at variousτ/Le during period-8 motion. Part II: Representative temperature contours of various
spatiotemporal states in the reactor at variousτ/Le during chaos.

Figure 7. (a)-(d) are the phase plot in the planes of〈θexit〉 versus〈xexit〉
for period-2, period-4, and period-8 motions and chaos, respectively.
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independent of the azimuthal position, that is, to rings of
transversal hot regions. This simplification of the numerical
efforts has obviously led to the finding of only a fraction of all
the transversal hot zones that may exist in a long adiabatic
packed-bed reactor. The simulations presented here are the first
of the formation and dynamics of stable transversal hot zones
in packed-bed reactors. It would be useful to conduct in the
future the more complex and tedious simulations of the 3-D
model, to determine if it exhibits, in addition to richer spatial
patterns, also qualitatively different dynamic features.

Our simulations of the long adiabatic packed-bed reactor re-
vealed some dynamic features that we did not find during the
simulations of the shallow packed-bed reactor. The simulations
of the long bed reactor revealed a period-2 bifurcation, that is,
transitions among states having period-2p features (p ) 1, 2, 3,
...). The simulations of the temporal motion revealed periodic
modulation among the spatial features resembling different
modes. For example, during about half of the time of the per-
iod-4 motion, the spatial features (Figure 4, part II-e, τ/Le )
5.9) resembled those of the first mode (m ) 0, n ) 1), while
during the remainder of the period (Figure 4, part II-k, τ/Le )
14.75), they resembled those of the second azimuthally sym-
metric mode (m ) 0, n ) 2). During the period-8 motion, the
spatial features resembled those of the first and second modes
and the spatially uniform state. The finding that one of the mo-
dulated spatial features resembles those of a transversally uni-
form state is surprising, as one may expect that it will shift the
reactor to the domain of attraction of the periodic stable, trans-
versally uniform state. This did not happen, indicating that the
motion was similar but not that of a stable periodic, uniform
state.

Our simulations of the shallow adiabatic packed-bed reactor,
in which the axial temperature and concentration gradients were
neglected, did not reveal dynamic motions in which the spatial
features during one period resemble those of different modes.
This novel dynamic feature may be due to the fact that the
dynamic features at each point in the reactor are affected by
nonlinear interaction with the dynamic behavior in the upstream
section. In a long reactor, the spatiotemporal transversal pattern
at any axial position strongly affects the concentration and
temperature fed to particles further downstream of that position.

This nonlinear coupling between the up- and downstream sec-
tions of the bed, which is not encountered in the shallow reactor
model, is a possible explanation of this juxtaposition and mod-
ulation of the spatial features during the periodic spatiotemporal
motions. This suggests that even more complex coupling and
modulation is expected to be observed in the 3-D simulations.

The snapshots of the spatial temperature during the chaotic
state (Figure 6-II) suggest that this state is generated by the
nonlinear modulation and juxtaposition among motions corre-
sponding to different modes. The simulation of the chaotic state
(Figure 6-II) is the first to show formation of very small hot
zones within a long bed. The “turbulent” formation and
movement of the hot regions resembles the formation of
turbulence in fluids because of the nonlinear interaction among
motions corresponding to different modes.34

Linear stability analysis indicates that a large number of
modes exist in a reactor with a sufficiently large diameter. Thus,
generation of chaos by a juxtaposition among trajectories
corresponding to different modes is certainly a possibility. An
important question is whether other complex motions exist and
how to predict these. Use of a coupled-cell network network
may enable tackling this question. A packed-bed reactor may
be mimicked as a network of cells with each cell representing
one catalyst particle and the surrounding fluid. The discretized
model is similar to a coupled-cell network, wherein the cells
are placed in an equally spaced network of 2 or 3 dimensions
with unequalcommunication between the nearest neighbors.
Stewart et al.35 presented a comprehensive method to predict
different structures that may form in various coupled-cell
networks. Golubitsky et al.36 presented several examples of
those. Application of this method may provide useful insights
on the structures that may exist and on how to predict them.

The presence of small local hot zones is very difficult to detect
in large industrial reactors. The simulations shown in Figure 8
indicate that measurement of the effluent concentration and
temperature may fail to detect the presence of hot zones in the
reactor, especially small ones. Since the most dangerous situation
occurs when the hot zones are located next to the reactor walls,
one may attempt to detect these by use of infrared monitoring
of the reactor walls or by painting the exterior reactor wall with
a temperature sensitive paint. There exist at present no efficient

Figure 8. Phase plots for period-2 motion in the planes of (a)xmin versusxmax and (d)〈θexit〉 versusxmax. Phase plots for period-4 motion in the planes of
(b) θmin versusθmax and (e)〈θexit〉 versusxmax. Phase plots for period-8 motion in the planes of (c)θmin versusθmax and (f) 〈θexit〉 versusxmax.
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tools for measurement of small hot zones inside a large-scale
reactor. Gladden’s group37 has attempted the use of magnetic
resonance imaging (MRI) for noninvasive measurement of the
local fluid properties at various positions in small packed-bed
reactors. Gladden38 suggested that local temperature may be
measured using this technique. Development of this method may
enable the detection of hot zones within laboratory reactors.

This study is the first step in the determination and under-
standing of local hot zones formation and motion inside a
uniform, long packed-bed reactor. Richer and more dynamics
are expected to be discovered by 3-D simulations. Even more
complex features will be generated by accounting for local
nonuniformities in the bed packing and/or activity. Heat loss
from the reactors walls is expected to generate even more
intricate dynamic features.
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Appendix I
Codimension-1 Locus: Hopf Neutral Stability Curves.A

neutral stability point satisfies the codimension-1 problem

whereF is the steady-state 1-D model equations, andDuF|uss is
the first Fréchet derivative ofF with respect to the state variables
u(η) evaluated at the 1-D base steady-stateuss(η). P is the
transverse perturbation matrix,σi is the coefficient of the
imaginary eigenvalue, andω(η) ) ωr(η) ( iωi(η) are the
corresponding complex eigenvectors. A neutral stability point
is obtained by solving eq AI-1 simultaneously with

A neutral stability curve is obtained by the pseudo-arc length
continuation of a neutral stability point with respect toR/dp.

Notations

av ) catalyst specific surface area, msurf
2/m3

A ) constant coefficient for initial conditions in eq 23
C ) concentration, mol/m3

Cp ) specific heat capacity, J kg-1 K-1

dp ) particle diameter, m
D ) species diffusion coefficient, m2/s
Da ) Damköhler number, defined by eq 8
DuF ) first Fréchet derivative
E ) activation energy, J/mol
F ) vector of steady-state equations
G1 ) dimensionless rate of adsorption of species A, defined by

eq 5

G2 ) dimensionless rate of adsorption of species B, defined by
eq 6

Jm ) Bessel function of first kind
k ) adsorption or reaction constant
L ) length of the reactor, m
Le ) Lewis number, defined by eq 11
M ) adsorption capacity, mol/msurf

2

N ) radial grid points
Nc ) dimensionless adsorption capacity, defined by eq 11
P ) transversal perturbation matrix
r ) radial coordinate, m
R ) radius of the reactor, m
Rh ) universal gas constant, J mol-1 K-1

R ) dimensionless reaction rate, defined by eq 7
t ) time, s
T ) temperature, K
u ) vector of state variables
V ) superficial fluid velocity, m/s
x ) conversion, defined by eq 8
y ) fractional surface coverage
z ) axial coordinate, m

Greek Letters

â ) adiabatic temperature rise, defined by eq 11
γ ) dimensionless activation energy, defined by eq 8
ε ) bed voidage
η ) dimensionless axial coordinate, defined by eq 11
θ ) dimensionless temperature, defined by eq 8
λh ) effective thermal conductivity, W m-1 K-1

µ ) surface coverage factor
µmn ) transversal eigenmodes
ê ) dimensionless radial coordinate, defined by eq 11
F ) density, kg/m3

σ ) complex eigenvalue
τ ) dimensionless time, defined by eq 8
φ ) azimuthal coordinate
ω ) eigenvector
ωmn ) transversal perturbation vector, defined by eq 15
-∆H ) heat of reaction, J/mol

Others

∇2 ) Laplacian in polar coordinates

Superscripts

m ) mass
h ) heat

Subscripts

a ) axial
A ) species A
B ) species B
g ) gas phase
i ) imaginary
in ) inlet
m ) azimuthal mode number
n ) radial mode number
r ) real
s ) solid
ss) steady state
⊥ ) transversal
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