Lectures on Non-Newtonian Fluid Dynamics

Professor E John Hinch

Professor John Hinch is a Distinguished Visiting Professor in Department of Chemical Engineering in IIT Bombay. Prof Hinch would be delivering a series of lectures on Non-Newtonian Fluid Dynamics in **Room 112, Ground floor, Department of Chemical Engineering from 4:00-6:30 PM, 4-8 March, 2024.** Lecture contents are listed on the next page.

Biography

Professor John Hinch is a Professor of Fluid Mechanics in the Department of Applied Mathematics and Theoretical at the University of Cambridge. He is also a Fellow of Trinity College and a Fellow of the Royal Society. His main research interests are: microhydrodynamics, colloidal dispersions, flow through porous media, polymer rheology, non-Newtonian fluid dynamics, mobile particulate systems and applications of mathematics to industrial problems.

IITB: Non-Newtonian Fluid Dynamics

John Hinch

DAMTP-CMS, Cambridge University

January 24, 2024

Contents 2

1. Phenomena

Nonlinear flow Inhibition of stretching Elastic effects Normal stress

2. Rheometry

Simple shear devices Steady shear viscosity Normal stresses Oscillating shear Extensional viscosity Scalings

Contents

- 1. Phenomena
- 2. Rheometry
- 3. Constitutive Equations
- 4. Simple flow calculations
- 5. Experiments
- 6. Numerics
- 7. Microstructural studies
- 8. Yield problems
- 9. Stress relaxation & Normal stresses
- 10. Instabilities
- 11. Strong flows

Contents 3

- 3. Constitutive Equations 'Simple materials' Time derivatives Linear viscoelasticity Second-order fluid Generalised Newtonian Oldroyd-B K-BKZ
- 4. Simple flow calculations

Pipe flow of a power-law fluid Capillary rheometry Bingham yield fluid in a Couette device Rod-climbing of a second-order fluid Unchanging flow field for a second-order fluid Anisotropic converging flow Spinning an Oldroyd-B fluid

Contents 4

5. Experiments

Materials Observations Practical problems

6. Numerics

Discretisation Pressure Elliptic and hyperbolic Benchmarks Problems

Contents 6

10. Instabilities

Spinline draw resonance Buckling instability Purely elastic instability of curved streamlines Coextrusion instability Turbulent Drag Reduction High-speed elastic jet

11. Strong flows

Birefringent strand Wine-glass model of contraction flow Corner singularity Limited-force flows Success and failure of Oldroyd-B and FENE

Contents 5

7. Microstructural studies

Micro-Macro views Einstein Viscosity Rotation Deformation Interactions Model of an isolated polymer Model of an entangled polymer

8. Yield problems

Yield stress Simple applications Squeeze film paradox Ketchup bottle and oil lines Open problems

9. Stress relaxation & Normal stresses