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1 Introduction

When we begin to use the concept of vectors for formulating mathematical models for physi-

cal systems, we start with the concept of a vector in the three dimensional coordinate space.

From the mathematical viewpoint, the three dimensional space can be looked upon as a

set of objects, called vectors, which satisfy certain generic properties. While working with

mathematical modeling we need to deal with variety of such sets containing di¤erent types

of objects. It is possible to distill essential properties satis�ed by all the vectors in the three

dimensional vector space and develop a more general concept of a vector space, which is a set

of objects that satisfy these generic properties. Such a generalization can provide a uni�ed

view of problem formulations and the solution techniques. Generalization of the concept of

the vector and the three dimensional vector space to any general set is not su¢ cient. To

work with these sets of generalized vectors, we also need to generalize various algebraic and

geometric concepts, such as magnitude of a vector, convergence of a sequence of vectors,

limit, angle between two vectors, orthogonality etc., on these sets. Understanding the fun-

damentals of vector spaces helps in developing a uni�ed view of many seemingly di¤erent

numerical schemes. In this module, fundamentals of vector spaces are brie�y introduced. A

more detailed treatment of these topics can be found in Luenberger [2] and Kreyzig [1].

A word of advice before we begin to study these grand generalizations. While dealing with

the generalization of geometric notions in three dimensions to more general vector spaces,

it is di¢ cult to visualize vectors and surfaces as we can do in the three dimensional vector

space. However, if you understand the geometrical concepts in the three dimensional space

well, then you can develop an understanding of the corresponding concept in any general

vector space. In short, it is enough to know your school geometry well. We are only building

qualitatively similar structures on the other sets.

2 Vector Spaces

The concept of a vector space will now be formally introduced. This requires the concept of

closure and �eld.

De�nition 1 (Closure) A set is said to be closed under an operation when any two elements
of the set subject to the operation yields a third element belonging to the same set.

Example 2 The set of integers is closed under addition, multiplication and subtraction.
However, this set is not closed under division.
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Example 3 The set of real numbers (R) and the set of complex numbers (C) are closed
under addition, subtraction, multiplication and division.

De�nition 4 (Field) A �eld is a set of elements closed under addition, subtraction, mul-
tiplication and division.

Example 5 The set of real numbers (R) and the set of complex numbers (C) are scalar
�elds. However, the set of integers is not a �eld.

A vector space is a set of elements, which is closed under addition and scalar multiplica-

tion. Thus, associated with every vector space is a set of scalars F (also called as scalar �eld

or coe¢ cient �eld) used to de�ne scalar multiplication on the space. In functional analysis,

the scalars will be always taken to be the set of real numbers (R) or complex numbers (C).

De�nition 6 (Vector Space): A vector space X is a set of elements called vectors and

scalar �eld F together with two operations. The �rst operation is called addition which

associates with any two vectors x;y 2 X a vector x + y 2 X , the sum of x and y. The

second operation is called scalar multiplication, which associates with any vector x 2 X and

any scalar � a vector �x (a scalar multiple of x by �):

Thus, when X is a linear vector space, given any vectors x;y 2 X and any scalars

�; � 2 R; the element �x + �y 2 X. This implies that the well known parallelogram law

in three dimensions also holds true in any vector space. Thus, given a vector space X and

scalar �eld F , the fallowing properties hold for any x;y; z 2 X and any scalars �; � 2 F :

1. Commutative law: x+ y = y + x

2. Associative law: x+ (y + z) = (x+ y) + z

3. There exists a null vector 0 such that x+ 0 = x for all x 2 X

4. Distributive laws: �(x+ y) = �x+ �y, (�+ �)x = �x+ �x and �� (x) = � (�x)

5. �x = 0 when � = 0 and �x = x when � = 1:

6. For convenience �1x is de�ned as �x and called as negative of a vector. We have
x+ (�x) = 0; where 0 represents zero vector in X:

Example 7 (X � Rn; F � R) : n� dimensional real coordinate space. A typical element

x 2X can be expressed as

x =
h
x1 x2 ::::: xn

iT
where xi denotes the i�th element of the vector.
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Example 8 (X � Cn; F � C) : n� dimensional complex coordinate space.

Example 9 (X � Rn; F � C) : This combination of set X and scalar �eld F does not form

a vector space. For any x 2 X and any � 2 C the vector �x =2X:

Example 10 (X � l1; F � R) :Set of all in�nite sequence of real numbers. A typical vector
x of this space has form x = (�1; �2; :::::::::; �k; ::::::::):

Example 11 (X � C[a; b]; F � R) :Set of all continuous functions over an interval [a; b]
forms a vector space. We write x = y if x(t) = y(t) for all t 2 [a; b] The null vector 0 in
this space is a function which is zero every where on [a; b] ;i.e.

f(t) = 0 for all t 2 [a; b]

If x(t) and y(t) are vectors from this space and � is real scalar, then (x + y)(t) = x(t) +

y(t) and (�x)(t) = �x(t) are also elements of C[a; b]:

Example 12
�
X � C(n)[a; b]; F � R

�
:Set of all continuous and n times di¤erentiable func-

tions over an interval [a; b] forms a vector space.

Example 13 X � set of all real valued polynomial functions de�ned on interval [a; b] to-
gether with F � R forms a vector space.

Example 14 The set of all functions ff(t) : t 2 [a; b]g for which
bZ
a

jf(t)jp dt <1

holds is a linear space Lp:

Example 15 (X � Rm �Rn; F � R) :Here we consider the set of all m� n matrices with
real elements. It is easy to see that, if A;B 2 X; then �A + �B 2 X and X is a vector

space. Note that a vector in this space is a m� n matrix and the null vector corresponds to
m� n null matrix.

In three dimension, we often have to work with a line or a plane passing through the

origin, which form a subspace of the three dimensional space. The concept of a sub-space

can be generalized as follows.

De�nition 16 (Subspace): A non-empty subset M of a vector space X is called subspace

of X if every vector �x+�y is in M wherever x and y are both in M: Every subspace always

contains the null vector, I.e. the origin of the space x:
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Thus, the fundamental property of objects (elements) in a vector space is that they can

be constructed by simply adding other elements in the space. This property is formally

de�ned as follows.

De�nition 17 (Linear Combination): A linear combination of vectors x(1);x(2); ; :::::::x
(m)

in a vector space is of the form �1x
(1) + �2x

(2) + :::::::::::::: + �mx
(m) where (�1; :::�m) are

scalars.

Note that we are dealing with set of vectors�
x(k) : k = 1; 2; ::::::m:

	
(1)

The individual elements in the set are indexed using superscript (k). Now, if X = Rn and

x(k) 2 Rn represents k�th vector in the set, then it is a vector with n components which are
represented as follows

x(k) =
h
x
(k)
1 x

(k)
2 :::: x

(k)
n

iT
(2)

Similarly, if X = l1 and x(k) 2 l1 represents k�th vector in the set, then x(k) represents an

in�nite sequence with elements denoted as follows

x(k) =
h
x
(k)
1 :::: x

(k)
i ::::::

iT
(3)

De�nition 18 (Span of Set of Vectors): Let S be a subset of vector space X. The set
generated by all possible linear combinations of elements of S is called as span of S and

denoted as [S]. Span of S is a subspace of X.

De�nition 19 (Linear Dependence): A vector x is said to be linearly dependent upon a
set S of vectors if x can be expressed as a linear combination of vectors from S. Alternatively,

x is linearly dependent upon S if x belongs to the span of S; i.e. x 2 [S]. A vector is said to
be linearly independent of set S, if it not linearly dependent on S . A necessary and su¢ cient

condition for the set of vectors x(1);x(2); :::::x(m) to be linearly independent is that expression

mX
i=1

�ix
(i) = 0 (4)

implies that �i = 0 for all i = 1; 2::::::m:

De�nition 20 (Basis): A �nite set S of linearly independent vectors is said to be basis

for space X if S generates X i.e. X = [S]:

Example 21 Basis, Span and Sub-spaces
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1. Two dimensional plane passing through origin of R3. For example, consider the set S

of collection of all vectors

x =�x(1) + �x(2)

where �; � 2 R are arbitrary scalars and

x(1) =

264 2

�1
0

375 and x(2) =

264 40
1

375
i.e. S = span

�
x(1);x(2)

	
:This set de�nes a plane passing through origin in R3: Note

that a plane which does not pass through the origin is not a sub-space. The origin must

be included in the set for it to qualify as a sub-space.

2. Let S = fvg where v =
h
1 2 3 4 5

iT
and let us de�ne span of S as [S] = �v

where � 2 R represents a scalar. Here, [S] is one dimensional vector space and subspace
of R5

3. Let S =
�
v(1);v(2)

	
where

v(1) =

26666664
1

2

3

4

5

37777775 ; v(2) =

26666664
5

4

3

2

1

37777775 (5)

Here span of S (i.e. [S]) is two dimensional subspace of R5.

4. Consider set of nth order polynomials on interval [0; 1]. A possible basis for this space

is

p(1)(z) = 1; p(2)(z) = z; p(3)(z) = z2; ::::; p(n+1)(z) = zn (6)

Any vector p(t) from this space can be expressed as

p(z) = �0p
(1)(z) + �1p

(2)(z) + :::::::::+ �np
(n+1)(z) (7)

= �0 + �1z + ::::::::::+ �nz
n

Note that [S] in this case is (n+ 1) dimensional subspace of C[a; b].

5. Consider set of continuous functions over interval, i.e. C[��; �]: A well known basis
for this space is

x(0)(z) = 1; x(1)(z) = cos(z); x(2)(z) = sin(z); (8)

x(3)(z) = cos(2z); x(4)(z) = sin(2z); :::::::: (9)
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It can be shown that C[��; �] is an in�nite dimensional vector space.

6. The set of all symmetric real valued n� n matrices is a subspace of the set of all real
valued n�n matrices. This follows from the fact that matrix �A+�B is a real values
symmetric matrix for arbitrary scalars �; � 2 R when AT= A and BT = B:

Example 22 Show that functions 1, exp(t), exp(2t), exp(3t) are linearly independent over
any interval [a,b].

Let us assume that vectors (1; et; e2t; e3t) are linearly dependent i.e. there are constants

(�; �; ; �), not all equal to zero, such that

�+ �et + e2t + �e3t = 0 holds for all t 2 [a; b] (10)

Taking derivative on both the sides, the above equality implies

et(� + 2et + 3�e2t) = 0 holds for all t 2 [a; b]

Since et > 0 holds for all t 2 [a; b], the above equation implies that

� + 2et + 3�e2t = 0 holds for all t 2 [a; b] (11)

Taking derivative on both the sides, the above equality implies

et(2 + 6�et) = 0 holds for all t 2 [a; b]

which implies that

2 + 6�et = 0 holds for all t 2 [a; b] (12)

) et = ��
�
holds for all t 2 [a; b]

which is absurd. Thus, equality (12) holds only for  = � = 0 and vectors (1; et) are linearly

independent on any interval [a; b]. With  = � = 0, equality (11) only when � = 0 and

equality (10) holds only when � = 0: Thus, vectors (1; et; e2t; e3t) are linearly independent.

Example 23 Consider system of linear algebraic equations

Ax =

264 1 0 1

1 1 0

0 1 1

375
264 x1x2
x3

375 = b
Show that the set of all solutions of this equation for arbitrary vector b is same as R3:

It is easy to see that matrix A has rank equal to three and columns (and rows) are linearly

independent. Since the columns are linearly independent, a unique solution x 2R3 can be
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found for any arbitrary vector b 2 R3: Now, let us �nd a general solution x for an arbitrary
vector b by computing A�1 as follows

x = A�1b =

264 1=2 1=2 �1=2
�1=2 1=2 1=2

1=2 �1=2 1=2

375b

= b1

264 1=2

�1=2
1=2

375+ b2
264 1=2

1=2

�1=2

375+ b3
264 �1=21=2

1=2

375
= b1v

(1) + b2v
(2) + b3v

(3)

By de�nition

b1v
(1) + b2v

(2) + b3v
(3) 2 span

�
v(1);v(2);v(3)

	
for an arbitrary b 2 R3; and, since vectors

�
v(1);v(2);v(3)

	
are linearly independent, we have

span
�
v(1);v(2);v(3)

	
= R3

i.e. set of all possible solutions x of the system of equations under considerations is identical

to the entire space R3:

Example 24 Consider the ODE-BVP

d2u(z)

dz2
+ �2u(z) = 0 for 0 < z < 1

B:C:1 (at z = 0) : u(0) = 0

B:C:2 (at z = 1) : u(1) = 0

The general solution of this ODE-BVP, which satis�es the boundary conditions, is given by

u(z) = �1 sin(�z) + �2 sin(2�z) + �3 sin(3�z) + ::: =
1X
i=1

�i sin(i�z)

where (�1; �2; :::) 2 R are arbitrary scalars. The set of vectors fsin(�z); sin(2�z); sin(3�z); :::g
is linearly independent and form a basis for C(2)[0; 1]; i.e. the set of twice di¤erentiable con-

tinuous functions in interval [0; 1] i.e.

C(2)[0; 1] = span fsin(�z); sin(2�z); sin(3�z); :::g

Example 25 Consider system of linear algebraic equations

Ax =

264 1 2 �4
�1 �2 4

2 4 �8

375
264 x1x2
x3

375 =
264 00
0

375
8



Show that solutions of this equation forms a two dimensional subspace of R3:

It is easy to see that matrix A has rank equal to one and columns (and rows) are linearly

dependent. Thus, it is possible to obtain non-zero solutions to the above equation, which can

be re-written as follows264 1

�1
2

375x1 +
264 2

�2
4

375x2 +
264 �44
�8

375x3 =
264 00
0

375
Two possible solutions are

x(1) =

264 2

�1
0

375 and x(2) =

264 40
1

375
In fact, x(1) and x(2) and linearly independent and any linear combination of these two

vectors, i.e.

x =�x(1) + �x(2)

for any scalars (�; �) 2 R satis�es

Ax = A
�
�x(1) + �x(2)

�
= �

�
Ax(1)

�
+ �

�
Ax(2)

�
= 0:

Thus, the solutions can be represented by a set S = span
�
x(1);x(2)

	
; which forms a two

dimensional subspace of R3:

Example 26 Consider a third order linear ordinary di¤erential equation

d3u

dz2
+ 6

d2u

dz2
+ 11

du

dz
+ 6u = 0

de�ned over C(3)[0; 1]; i.e. set of thrice di¤erentiable continuous functions over [0; 1]: Show

that the general solution of the ODE forms a 3 dimensional subspace of C(3)[0; 1]:

Roots of the characteristic polynomial i.e.

p3 + 6p2 + 11p+ 6 = 0

are p = �1, p = �2 and p = �3. Thus, general solution of the ODE can be written as

u(z) = �e�z + �e�2z + e�3z

where (�; �; ) 2 R are arbitrary scalars. Since vectors fe�z; e�2z; e�3zg are linearly inde-
pendent, the set of solutions can be represented as S = span fe�z; e�2z; e�3zg ; which forms
a three dimensional sub-space of C(3)[0; 1]:
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A vector space having �nite basis (spanned by set of vectors with �nite number of el-

ements) is said to be �nite dimensional. All other vector spaces are said to be in�nite

dimensional. We characterize a �nite dimensional space by number of elements in a basis.

Any two basis for a �nite dimensional vector space contain the same number of elements.

Let X and Y be two vector spaces. Then their product space, denoted by X � Y , is an
ordered pair (x;y) such that x 2 X; y 2 Y: If z(1) = (x(1);y(1)) and z(2) = (x(2);y(2)) are
two elements of X � Y; then it is easy to show that �z(1) + �z(2) 2 X � Y for any scalars

(�,�). Thus, product space is a linear vector space.

Example 27 Let X = C[a; b] and Y = R; then the product space X � Y = C[a; b] �R
forms a linear vector space. Such product spaces arise in the context of ordinary di¤erential

equations.

3 Normed Linear Spaces and Banach Spaces

In three dimensional space, we use lengths or magnitudes to compare any two vectors. Gen-

eralization of the concept of length / magnitude of a vector in three dimensional vector space

to an arbitrary vector space is achieved by de�ning a scalar valued function called norm of

a vector.

De�nition 28 (Normed Linear Vector Space): A normed linear vector space is a vector
space X on which there is de�ned a real valued function which maps each element x 2 X
into a real number kxkcalled norm of x. The norm satis�es the fallowing axioms.

1. kxk � 0 for all x 2 X ; kxk = 0 if and only if x =0 (zero vector)

2. kx+ yk � kxk+ kykfor each x;y 2 X: (triangle inequality).

3. k�xk = j�j : kxk for all scalars � and each x 2 X

Example 29 Vector norms:

1. (Rn; k:k1) :Euclidean spaceRn with 1-norm: kxk1 =
NP
i=1

jxij

2. (Rn; k:k2) :Euclidean spaceRn with 2-norm:

kxk2 =
"
NX
i=1

(xi)
2

# 1
2
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3.
�
Rn; k:kp

�
:Euclidean spaceRn with p-norm:

kxkp =
"
NX
i=1

jxijp
# 1
p

(13)

where p is a positive integer

4. (Rn; k:k1) :Euclidean spaceRn with 1�norm: kxk1 = max jxij

5. n-dimensional complex space (Cn) with p-norm:

kxkp =
"
NX
i=1

jxijp
# 1
p

(14)

;where p is a positive integer

6. Space of in�nite sequences (l1) with p-norm: An element in this space, say x 2 l1, is
an in�nite sequence of numbers

x = fx1;x2; ::::::::; xn; ::::::::g (15)

such that p-norm de�ned as

kxkp =
" 1X
i=1

jxijp
# 1
p

<1 (16)

is bounded for every x 2 l1; where p is an integer.

7. (C[a; b]; kx(t)k1) : The normed linear space C[a; b] together with in�nite norm

kx(t)k1 =
max

a � t � b
jx(t)j (17)

It is easy to see that kx(t)k1 de�ned above quali�es to be a norm

max jx(t) + y(t)j � max[jx(t)j+ jy(t)j] � max jx(t)j+max jy(t)j (18)

max j�x(t)j = max j�j jx(t)j = j�jmax jx(t)j (19)

8. Other types of norms, which can be de�ned on the set of continuous functions over

[a; b] are as follows

kx(t)k1 =
bZ
a

jx(t)j dt (20)
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kx(t)k2 =

24 bZ
a

jx(t)j2 dt

35
1
2

(21)

Example 30 Determine whether(a) max jdf(t)=dtj (b) max jx(t)j+max jx0(t)j (c) jx(a)j+
max jx0(t)j and (d) jx(a)jmax jx(t)j can serve as a valid de�nitions for norm in C(2)[a; b]:

Solution: (a) max jdf(t)=dtj : For this to be a norm function, Axiom 1 in the de�nition

of the normed vector spaces requires

kf(t)k = 0) f(t) is the zero vector in C(2)[a; b] i.e. f(t) = 0 for all t 2 [a; b]

However, consider the constant function i.e. g(t) = c for all t 2 [a; b] where c is some

non-zero value. It is easy to see that

max jdg(t)=dtj = 0

even when g(t) does not correspond to the zero vector. Thus, the above function violates

Axiom 1 in the de�nition of a normed vector space and, consequently, cannot qualify as a

norm.

(b) max jx(t)j + max jx0(t)j : For any non-zero function x(t) 2 C(2)[a; b], Axiom 1 is

satis�ed. Axiom 2 follows from the following inequality

kx(t) + y(t)k = max jx(t) + y(t)j+max jx0(t) + y0(t)j
� [max jx(t)j+max jy(t)j] + [max jx0(t)j+max jy0(t)j]
� [max jx(t)j+max jx0(t)j] + [max jy(t)j+max jy0(t)j]
� kx(t)k+ ky(t)k

It is easy to show that Axiom 3 is also satis�ed for all scalars �: Thus, given function

de�nes a norm on C(2)[a; b]

(c) jx(a)j+max jx0(t)j : For any non-zero function x(t) 2 C(2)[a; b], Axiom 1 is satis�ed.

Axiom 2 follows from the following inequality

kx(t) + y(t)k = jx(a) + y(a)j+max jx0(t) + y0(t)j
� [jx(a)j+ jy(a)j] + [max jx0(t)j+max jy0(t)j]
� [jx(a)j+max jx0(t)j] + [jy(a)j+max jy0(t)j]
� kx(t)k+ ky(t)k

Axiom A3 is also satis�ed for any � as

k�x(t)k = j�x(a)j+max j�x0(t)j
= j�j [jx(a)j+max jx0(t)j]
= j�j : kxk
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(d) jx(a)jmax jx(t)j : Consider a non-zero function x(t) in C(2)[a; b] such that x(a) = 0
and max jx(t)j 6= 0: Then, Axiom 1 is not satis�ed for all vector x(t) 2 C(2)[a; b] and the
above function does not qualify to be a norm on C(2)[a; b]:

In a normed linear space X; the set of all vectors x 2X such that kx�xk � 1 is called
unit ball centered at x:A unit ball in (R2; k:k2) is the set of all vectors in the circle with the
origin at the center and radius equal to one while a unit ball in (R3; k:k2) is the set of all
points in the unit sphere with the origin at the center. Schematic representation of a unit

ball in C[0,1] when maximum norm is used is shown in Figure 1. The unit ball in C[0,1] is

set of all functions f(z) such that jf(z)j � 1 where z 2 [0; 1]:

Figure 1: Schematic representation of a unit ball in C[0,1]

Once we have de�ned a norm in a vector space, we can proceed to generalize the concept

of convergence of a sequence of vector. Concept of convergence is central to all iterative

numerical methods.

De�nition 31 (Cauchy sequence): A sequence
�
x(k)

	
in normed linear space is said to

be a Cauchy sequence if
x(n) � x(m)! 0 as n;m!1:i.e. given an " > 0 there exists an

integer N such that
x(n) � x(m) < " for all n;m � N:

De�nition 32 (Convergence): In a normed linear space an in�nite sequence of vectors�
x(k) : k = 1; 2; :::::::

	
is said to converge to a vector x� if the sequence

�x� � x(k) ; k = 1; 2; :::	
of real numbers converges to zero. In this case we write x(k) ! x�:
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In particular, a sequence
�
x(k)

	
in Rnconverges if and only if each component of the

vector sequence converges. If a sequence converges, then its limit is unique.

Example 33 Convergent sequences: Consider the sequence of vectors represented as

x(k) =

26664
1 + (0:2)k

�1 + (0:9)k

3=
�
1 + (�0:5)k

�
(0:8)k

37775!
26664
1

�1
3

0

37775 (22)

for k = 0, 1, 2,.... is a convergent sequence with respect to any p-norm de�ned on R4: It can

be shown that it is a Cauchy sequence. Note that each element of the vector converges to a

limit in this case.

Every convergent sequence is a Cauchy sequence. Moreover, when we are working in

Rn or Cn;all Cauchy sequences are convergent. However, all Cauchy sequences in a general

vector space need not be convergent. Cauchy sequences in some vector spaces exhibit such

strange behavior and this motivates the concept of completeness of a vector space.

De�nition 34 (Banach Space): A normed linear space X is said to be complete if every

Cauchy sequence has a limit in X. A complete normed linear space is called Banach space.

Examples of Banach spaces are

(Rn; k:k1) ; (Rn; k:k2) ; (Rn; k:k1)

(Cn; k:k1) ; (Cn; k:k2) ; (l1; k:k1) ; (l1; k:k2)

Concept of Banach spaces can be better understood if we consider an example of a vector

space where a Cauchy sequence is not convergent, i.e. the space under consideration is an

incomplete normed linear space. Note that, even if we �nd one Cauchy sequence in this

space which does not converge, it is su¢ cient to prove that the space is not complete.

Example 35 Let X = (Q; k:k1) i.e. set of rational numbers (Q) with scalar �eld also as the
set of rational numbers (Q) and norm de�ned as

kxk1 = jxj (23)

A vector in this space is a rational number. In this space, we can construct Cauchy sequences

which do not converge to a rational numbers (or rather they converge to irrational numbers).
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For example, the well known Cauchy sequence

x(1) = 1=1

x(2) = 1=1 + 1=(2!)

:::::::::

x(n) = 1=1 + 1=(2!) + :::::+ 1=(n!)

converges to e, which is an irrational number. Similarly, consider sequence

x(n+1) = 4� (1=x(n))

Starting from initial point x(0) = 1; we can generate the sequence of rational numbers

3=1; 11=3; 41=11; ::::

which converges to 2+
p
3 as n!1:Thus, limits of the above sequences is outside the space

X and the space is incomplete.

Example 36 Consider sequence of functions in the space of twice di¤erentiable continuous
functions C(2)(�1;1)

f (k)(t) =
1

2
+
1

�
tan�1 (kt)

de�ned in interval �1 < t < 1; for all integers k. The range of the function is (0,1). As
k !1; the sequence of continuous function converges to a discontinuous function

u(�)(t) = 0 �1 < t < 0

= 1 0 < t <1

Example 37 Let X = (C[0; 1]; k:k1) i.e. space of continuous function on [0; 1] with one
norm de�ned on it i.e.

kx(t)k1 =
1Z
0

jx(t)j dt (24)

and let us de�ne a sequence [2]

x(n)(t) =

8><>:
0 (0 � t � (1

2
� 1

n
)

n(t� 1
2
) + 1 (1

2
� 1

n
) � t � 1

2
)

1 (t � 1
2
)

9>=>; (25)

Each member is a continuous function and the sequence is Cauchy asx(n) � x(m) = 1

2

���� 1n � 1

m

����! 0 (26)

However, as can be observed from Figure 2, the sequence does not converge to a continuous

function.
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Figure 1: Figure 2: Sequence of continuous functions

The concepts of convergence, Cauchy sequences and completeness of space assume im-

portance in the analysis of iterative numerical techniques. Any iterative numerical method

generates a sequence of vectors and we have to assess whether the sequence is Cauchy to

terminate the iterations. To a beginner, it may appear that the concept of incomplete vector

space does not have much use in practice. It may be noted that, when we compute numerical

solutions using any computer, we are working in �nite dimensional incomplete vector spaces.

In any computer with �nite precision, any irrational number such as � or e; is approximated

by an rational number due to �nite precision. In fact, even if we want to �nd a solution

in Rn; while using a �nite precision computer to compute a solution, we actually end up

working in Qn and not in Rn:

4 Inner Product Spaces and Hilbert Spaces

Similar to magnitude / length of a vector, another important concept in three dimensional

space that needs to be generalized is angle between any two vectors. Given any two unit

vectors in R3, say bx and by;the angle between these two vectors is de�ned using inner (or dot)

16
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product of two vectors as

cos(�) = (bx)T by = � x

kxk2

�T
y

kyk2
(27)

= bx1by1 + bx2by2 + bx3by3 (28)

The fact that cosine of angle between any two unit vectors is always less than one can be

stated as

jcos(�)j = jhbx; byij � 1 (29)

Moreover, vectors x and y are called orthogonal if (x)T y = 0: Orthogonality is probably

the most useful concept while working in three dimensional Euclidean space. Inner product

spaces and Hilbert spaces generalize these simple geometrical concepts in three dimensional

Euclidean space to higher or in�nite dimensional vector spaces.

De�nition 38 (Inner Product Space): An inner product space is a linear vector space
X together with an inner product de�ned onX �X. Corresponding to each pair of vectors
x;y 2 X the inner product hx;yi of x and y is a scalar. The inner product satis�es following
axioms.

1. hx;yi = hy;xi (complex conjugate)

2. hx+ y; zi = hx; zi+ hy; zi

3. h�x;yi = � hx;yi

hx; �yi = � hx;yi

4. hx;xi � 0 and hx;xi = 0 if and only if x = 0:

De�nition 39 (Hilbert Space): A complete inner product space is called as an Hilbert

space.

Here are some examples of commonly used inner product and Hilbert spaces.

Example 40 Inner Product Spaces

1. X � Rn with inner product de�ned as

hx;yi = xTy =
nX
i=1

xiyi (30)

hx;xi =
nX
i=1

(xi)
2 = kxk22 (31)

is a Hilbert space.
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2. X � Rn with inner product de�ned as

hx;yiW = xTWy (32)

where W is a positive de�nite matrix is a Hilbert space. The corresponding 2-norm is

de�ned as kxkW;2 =
p
hx;xiW =

p
xTWx

3. X � Cn with inner product de�ned as

hx;yi =
nX
i=1

xiyi (33)

hx;xi =
nX
i=1

xixi =
nX
i=1

jxij2 = kxk22 (34)

is a Hilbert space.

4. The set of real valued square integrable functions on interval [a; b] with inner product

de�ned as

hx;yi =
bZ
a

x(t)y(t)dt (35)

is an Hilbert space and denoted as L2[a; b]:Well known examples of spaces of this type

are the set of continuous functions on L2[��; �] or L2[0; 2�], which are considered while
developing Fourier series expansions of continuous functions on [��; �] or [0; 2�] using
sin(n�) and cos(n�) as basis functions.

5. Space of polynomial functions on [a; b]with inner product

hx;yi =
bZ
a

x(t)y(t)dt (36)

is a inner product space. This is a subspace of L2[a; b]:

6. Space of complex valued square integrable functions on [a; b] with inner product

hx;yi =
bZ
a

x(t)y(t)dt (37)

is an inner product space:

18



Axioms 2 and 3 imply that the inner product is linear in the �rst entry. The quantity

hx;xi
1
2 is a candidate function for de�ning norm on the inner product space: Axioms 1 and

3 imply that k�xk = j�j kxk and axiom 4 implies that kxk > 0 for x 6= 0: If we show thatp
hx;xisatis�es triangle inequality, then

p
hx;xi de�nes a norm on space X . We �rst prove

Cauchy-Schwarz inequality, which is generalization of equation (29), and proceed to show

that
p
hx;xi de�nes the well known 2-norm on X; i.e. kxk2 =

p
hx;xi.

Lemma 41 (Cauchey- Schwarz Inequality): Let X denote an inner product space. For

all x;y 2 X ,the following inequality holds

jhx;yij � [hx;xi]1=2 [hy;yi]1=2 (38)

The equality holds if and only if x = �y or y = 0

Proof: If y = 0, the equality holds trivially so we assume y 6= 0: Then, for all scalars
�;we have

0 � hx� �y;x� �yi = hx;xi � � hx;yi � � hy;xi+ j�j2 hy;yi (39)

In particular, if we choose � =
hy;xi
hy;yi ; then, using axiom 1 in the de�nition of inner product,

we have

� =
hy;xi
hy;yi =

hx;yi
hy;yi (40)

) �� hx;yi � � hy;xi = �2 hx;yi hy;xihy;yi (41)

= �2 hx;yi hx;yihy;yi = �2 jhx;yij
2

hy;yi (42)

) 0 � hx;xi � jhx;yij
2

hy;yi (43)

or j hx;yij �
p
hx;xi hy;yi

The triangle inequality can be can be established easily using the Cauchy-Schwarz in-

equality as follows

hx+ y;x+ yi = hx;xi+ hx;yi+ hy;xi+ hy;yi : (44)

� hx;xi+ 2 jhx;yij+ hy;yi (45)

� hx;xi+ 2
p
hx;xi hy;yi+ hy;yi (46)
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p
hx+ y;x+ yi �

p
hx;xi+

p
hy;yi (47)

Thus, the candidate function
p
hx;xi satis�es all the properties necessary to de�ne a norm,

i.e. p
hx;xi � 0 8 x 2 X and

p
hx;xi = 0 iff x = 0 (48)p

h�x; �xi = j�j
p
hx;xi (49)p

hx+ y;x+ yi �
p
hx;xi+

p
hy;yi (Triangle inequality) (50)

Thus, the function
p
hx;xi indeed de�nes a norm on the inner product space X: In fact the

inner product de�nes the well known 2-norm on X; i.e.

kxk2 =
p
hx;xi (51)

and the triangle inequality can be stated as

kx+ yk22 � kxk
2
2 + 2 kxk2 : kyk2 + kyk

2
2 : = [kxk2 + kyk2]

2 (52)

or kx+ yk2 � kxk2 + kyk2 (53)

De�nition 42 (Angle) The angle � between any two vectors in an inner product space is
de�ned by

� = cos�1
�
hx;yi

kxk2 kyk2

�
(54)

De�nition 43 (Orthogonal Vectors): In a inner product space X two vector x;y 2 X are
said to be orthogonal if hx;yi = 0:We symbolize this by x?y:A vector x is said to be

orthogonal to a set S (written as x?S) if x?z for each z 2 S:

Just as orthogonality has many consequences in three dimensional geometry, it has many

implications in any inner-product / Hilbert space [2]. The Pythagoras theorem, which is

probably the most important result the plane geometry, is true in any inner product space.

Lemma 44 If x?y in an inner product space then kx+ yk22 = kxk
2
2 + kyk

2
2 .

Proof: kx+ yk22 = hx+ y;x+ yi = kxk
2
2 + kyk

2
2 + hx;yi+ hy;xi :

De�nition 45 (Orthogonal Set): A set of vectors S in an inner product space X is said

to be an orthogonal set if x?y for each x;y 2 S and x 6= y: The set is said to be orthonormal
if, in addition each vector in the set has norm equal to unity.
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Note that an orthogonal set of nonzero vectors is linearly independent set. We often prefer

to work with an orthonormal basis as any vector can be uniquely represented in terms of

components along the orthonormal directions. Common examples of such orthonormal basis

are (a) unit vectors along coordinate directions in Rn (b) function fsin(nt) : n = 1; 2; :::g
and fcos(nt) : n = 1; 2; :::g in L2[0; 2�]:

Example 46 Show that function hx;yiW : Rn �Rn ! R de�ned as

hx;yiW = xTWy

de�nes an inner product on when W is a symmetric positive de�nite matrix.

Solution: For hx;yiW = xTWy to qualify as inner product, it must satisfy the following

all four axioms in the de�nition of the inner product. We have,

hx;yiW = xTWy and hy;xiW = yTWx

Since W is symmetric, i.e.

W T = W ,
�
xTWy

�T
= yTW Tx = yTWx

Thus, axiom A1 holds for any x; y 2 Rn:

hx+ y; ziW = (x+ y)TWz = xTWz+ xTWz = hx; ziW + hy; ziW

Thus, axiom A2 holds for any x; y; z 2 Rn:

h�x;yi = (�x)TWy =�(xTWy) =� hx;yi
hx; �yi = xTW (�y) =�(xTWy) =� hx;yi

Thus, axiom A3 holds for any x;y 2 Rn: Since W is positive de�nite, it follows that

hx;xiW = xTWx > 0 if x 6= 0 and hx;xiW = xTWx = 0 if x = 0: Thus, axiom A4 holds

for any x 2 Rn: Since all four axioms are satis�ed, hy;xiW = yTWx is a valid de�nition of

an inner product.

Example 47 The triangle inequality asserts that, for any two vectors x and y belonging to
an inner product space

kx+ yk2� jjyjj2+jjxjj2
Does the Cauchy-Schwartz inequality follow from the triangle inequality? Under what condi-

tion Schwartz inequality becomes an equality?

Solution: Squaring both the sides, we have

kx+ yk22 = hx+ y;x+ yi� [jjyjj2+jjxjj2]
2
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hx;xi+ hy;yi+ 2 hx;yi � jjyjj22+jjxjj
2
2 + 2jjyjj2jjxjj2

jjyjj22+jjxjj
2
2 + 2 hx;yi � jjyjj

2
2+jjxjj

2
2 + 2jjyjj2jjxjj2

Since, jjyjj22 + jjxjj22 � 0 for any x;y 2 X; the above inequality reduces to

hx;yi � jjyjj2jjxjj2 (55)

The triangle inequality also implies that

kx� yk22 = hx� y;x� yi� [jjyjj2+jjxjj2]
2

hx;xi+ hy;yi � 2 hx;yi � jjyjj22+jjxjj
2
2 + 2jjyjj2jjxjj2

jjyjj22+jjxjj
2
2 � 2 hx;yi � jjyjj

2
2+jjxjj

2
2 + 2jjyjj2jjxjj2

Since, jjyjj22 + jjxjj22 � 0 for any x;y 2 X; the above inequality reduces to

�hx;yi � jjyjj2jjxjj2

i.e.

�jjyjj2jjxjj2 � hx;yi (56)

Combining inequalities (55) and (56), we arrive at the Cauchy-Schwartz inequality

�jjyjj2jjxjj2 � hx;yi � jjyjj2jjxjj2 (57)

i.e.

jhx;yij � jjyjj2jjxjj2 (58)

The Cauchy-Schwartz inequality reduces to equality when y = �x:

5 Gram-Schmidt Process and Orthogonal Polynomials

Given any linearly independent set in an inner product space, it is possible to construct

an orthonormal set. This procedure is called Gram-Schmidt procedure. Consider a linearly

independent set of vectors
�
x(i); i = 1; 2; 3:::::n

	
in a inner product space we de�ne e(1) as

e(1) =
x(1)

kx(1)k2
(59)

We form unit vector e(2) in two steps.

z(2) = x(2) �


x(2); e(1)

�
e(1) (60)
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where


x(2); e(1)

�
is component of x(2) along e(1):

e(2) =
z(2)

kz(2)k2
(61)

:By direct calculation it can be veri�ed that e(1)?e(2): The remaining orthonormal vectors
e(i) are de�ned by induction. The vector z(k) is formed according to the equation

z(k) = x(k) �
k�1X
i=1



x(k); e(i)

�
:e(i) (62)

and

e(k) =
z(k)

kz(k)k2
; k = 1; 2; :::::::::n (63)

It can be veri�ed by direct computation that z(k)?e(j) for all j < k as follows



z(k); e(j)

�
=



x(k); e(j)

�
�

k�1X
i=1



x(k); e(i)

�
:


e(i); e(j)

�
(64)

=


x(k); e(j)

�
�


x(k); e(j)

�
= 0 (65)

Example 48 Gram-Schmidt Procedure in R3 : Consider X = R3 with hx;yi = xTy:

Given a set of three linearly independent vectors in R3

x(1) =

264 10
1

375 ; x(2) =
264 10
0

375 ; x(3) =
264 21
0

375 (66)

we want to construct and orthonormal set. Applying Gram Schmidt procedure,

e(1) =
x(1)

kx(1)k2
: =

264
1p
2

0
1p
2

375 (67)

z(2) = x(2) �


x(2); e(1)

�
:e(1) (68)

=

264 10
0

375� 1p
2

264
1p
2

0
1p
2

375 =
264

1
2

0

�1
2

375

e(2) =
z(2)

kz(2)k2
: =

264
1p
2

0

� 1p
2

375 (69)
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z(3) = x(3) �


x(3); e(1)

�
:e(1) �



x(3); e(2)

�
:e(2)

=

264 21
0

375�p2
264

1p
2

0
1p
2

375�p2
264

1p
2

0

� 1p
2

375 =
264 01
0

375 (70)

e(3) =
z(3)

kz(3)k2
: =

h
0 1 0

iT
Note that the vectors in the orthonormal set will depend on the de�nition of inner product.

Suppose we de�ne the inner product as follows

hx;yiW = xTWy (71)

W =

264 2 �1 1

�1 2 �1
1 �1 2

375
where W is a positive de�nite matrix. Then, length of

x(1)
W;2

=
p
6 and the unit vectorbe(1) becomes

be(1) = x(1)

kx(1)kW;2
: =

264
1p
6

0
1p
6

375 (72)

The remaining two orthonormal vectors have to be computed using the inner product de�ned

by equation 71.

Example 49 Gram-Schmidt Procedure in C[a,b]: Let X represent set of continuous

functions on interval �1 � t � 1 with inner product de�ned as

hx(t);y(t)i =
1Z
�1

x(t)y(t)dt (73)

Given a set of four linearly independent vectors

x(1)(t) = 1; x(2)(t) = t; x(3)(t) = t2; x(4)(t) = t3 (74)

we intend to generate an orthonormal set. Applying Gram-Schmidt procedure

e(1)(t) =
x(1)(t)

kx(1)(t)k =
1p
2

(75)



e(1)(t);x(2)(t)

�
=

1Z
�1

t

2
dt = 0 (76)
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z(2)(t) = t�


x(2); e(1)

�
:e(1) = t = x(2)(t) (77)

e(2) =
z(2)

kz(2)k (78)

z(2)(t)2 = 1Z
�1

t2dt =

�
t3

3

�1
�1
=
2

3
(79)

z(2)(t) =r2
3

(80)

e(2)(t) =

r
3

2
:t (81)

z(3)(t) = x(3)(t)�


x(3)(t); e(1)(t)

�
:e(1)(t)�



x(3)(t); e(2)(t)

�
:e(2)(t)

= t2 � 1
2

0@ 1Z
�1

t2dt

1A e(1)(t)�
0@r3

2

1Z
�1

t3dt

1A e(2)(t)
= t2 � 1

3
� 0 = t2 � 1

3
(82)

e(3)(t) =
z(3)(t)

kz(3)(t)k (83)

where
z(3)(t)2 =



z(3)(t); z(3)(t)

�
=

1Z
�1

�
t2 � 1

3

�2
dt (84)

=

1Z
�1

�
t4 � 2

3
t2 +

1

9

�
dt =

�
t5

5
� 2t

3

9
+
t

9

�1
�1

=
2

3
� 4
9
+
2

9
=
18� 10
45

=
8

45

z(3)(t) =r 8

45
=
2

3

r
2

5
(85)

The orthonormal polynomials constructed above are well known Legandre polynomials. It

turns out that

en(t) =

r
2n+ 1

2
pn(t) ; (n = 0; 1; 2:::::::) (86)

where

Pn(t) =
(�1)n

2nn!

dn

dtn
��
1� t2

�n	
(87)
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are Legandre polynomials. It can be shown that this set of polynomials forms a orthonormal

basis for the set of continuous functions on [-1,1]. First few elements in this orthogonal set

are as follows

P0(t) = 1; P1(t) = t; P2(t) =
1

2
(3t2 � 1); P3(t) =

1

2
(5t3 � 3t)

P4(t) =
1

8
(35t4 � 30t2 + 3); P5(t) =

1

8
(63t5 � 70t3 + 15t)

Example 50 Gram-Schmidt Procedure in other Spaces

1. Shifted Legandre polynomials: X = C[0; 1] and inner product de�ned as

hx(t);y(t)i =
1Z
0

x(t)y(t)dt (88)

These polynomials are generated starting from linearly independent vectors

x(1)(t) = 1; x(2)(t) = t; x(3)(t) = t2; x(4)(t) = t3 (89)

and applying Gram-Schmidt process.

2. Hermite Polynomials: X � L2(�1;1); i.e. space of continuous functions over
(�1;1) with 2 norm de�ned on it and

hx(t);y(t)i =
1Z
�1

x(t)y(t)dt (90)

Apply Gram-Schmidt to the following set of vectors in L2(�1;1)

x(1)(t) = exp(�t
2

2
) ; x(2)(t) = tx(1)(t) ; (91)

x(3)(t) = t2x(1)(t) ; ::::::x(k)(t) = tk�1x(1)(t) ; :::: (92)

First few elements in this orthogonal set are as follows

H0(t) = 1; H1(t) = 2t; H2(t) = 4t
2 � 2; H3(t) = 5t

3 � 12t
H4(t) = 16t4 � 48t2 + 12; H5(t) = 32t

5 � 160t3 + 120t

3. Laguerre Polynomials: X � L2(0;1); i.e. space of continuous functions over

(0;1) with 2 norm de�ned on it and

hx(t);y(t)i =
1Z
0

x(t)y(t)dt (93)
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Apply Gram-Schmidt to the following set of vectors in L2(0;1)

x(1)(t) = exp(� t
2
) ; x(2)(t) = tx(1)(t) ; (94)

x(3)(t) = t2x(1)(t) ; ::::::x(k)(t) = tk�1x(1)(t) ; :::: (95)

The �rst few Laguerre polynomials are as follows

L0(t) = 1 ; L1(t) = 1� t ; L2(t) = 1� 2t+ (1=2)t2

L3(t) = 1� 3t+ 3
2
t2 � 1

6
t3 ; L4(t) = 1� 4t+ 3t2 �

2

3
t3 +

1

24
t4

6 Induced Matrix Norms

We have already mentioned that set of all m � n matrices with real entries (or complex
entries) can be viewed a linear vector space. In this section, we introduce the concept of

induced norm of a matrix, which plays a vital role in the numerical analysis. A norm of

a matrix can be interpreted as ampli�cation power of the matrix. To develop a numerical

measure for ill conditioning of a matrix, we �rst have to quantify this ampli�cation power of

the matrix.

De�nition 51 (Induced Matrix Norm): The induced norm of a m � n matrix A is
de�ned as mapping from Rm �Rn ! R+ such that

kAk = Max

x 6= 0
kAxk
kxk (96)

In other words, kAk bounds the ampli�cation power of the matrix i.e.

kAxk
kxk � kAk for all x 2 Rn;x 6= 0 (97)

The equality holds for at least one non zero vector x 2 Rn. An alternate way of de�ning
matrix norm is as follows

kAk = Max

kbxk = 1 kAbxk (98)

De�ning bx as bx = x

kxk
it is easy to see that these two de�nitions are equivalent. The following conditions are

satis�ed for any matrices A; B 2 Rm �Rn
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1. kAk > 0 if A 6= [0] and k[0]k = 0

2. k�Ak = j�j.kAk

3. kA+Bk � kAk+ kBk

4. kABk � kAk kBk

The induced norms, i.e. norm of matrix induced by vector norms on Rm and Rn, can be

interpreted as maximum gain or ampli�cation factor of the matrix.

6.1 Computation of 2-norm

Now, consider 2-norm of a matrix, which can be de�ned as follows

jjAjj2 =
max

x 6= 0

jjAxjj2
jjxjj2

(99)

Squaring both sides

jjAjj22 =
max

x 6= 0

(Ax)T (Ax)

(xTx)
=

max

x 6= 0

xTBx

(xTx)

where B = ATA is a symmetric and positive de�nite matrix. Positive de�niteness of matrix

B requires that

xTBx > 0 if x 6=
�

0 and xTBx = 0 if and only if x = 0 (100)

If columns of A are linearly independent, then it implies that

xTBx = (Ax)T (Ax) > 0 if x 6= 0 (101)

= 0 if x = 0 (102)

Now, a positive de�nite symmetric matrix can be diagonalized as

B = 	�	T (103)

Where 	 is matrix with eigen vectors as columns and � is the diagonal matrix with eigen-

values of B (= ATA) on the main diagonal. Note that in this case 	 is unitary matrix

,i.e.,

		T = I i.e 	T = 	�1 (104)
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and eigenvectors are orthogonal. Using the fact that 	 is unitary, we can write

xTx = xT		Tx = yTy (105)

This implies that
xTBx

(xTx)
=
yT�y

(yTy)
(106)

where y = 	Tx: Suppose eigenvalues �iof ATA are numbered such that

0 < �1 � �2 � :::::: � �n (107)

Then, we have
yT�y

(yTy)
=
(�1y

2
1 + �2y

2
2 + ::::::+ �ny

2
n)

(y21 + y
2
2 + ::::::+ y

2
n)

� �n (108)

which implies that
yT�y

(yTy)
=
xTBx

(xTx)
=
xT (ATA)x

(xTx)
� �n (109)

The equality holds only at the corresponding eigenvector of ATA, i.e.,�
v(n)

�T
(ATA)v(n)

[v(n)]
T
v(n)

=

�
v(n)

�T
�nv

(n)

[v(n)]
T
v(n)

= �n (110)

Thus, 2 norm of matrix A can be computed as follows

jjAjj22 =
max

x 6= 0
jjAxjj2=jjxjj2 = �max(ATA) (111)

i.e.

jjAjj2 = [�max(ATA)]1=2 (112)

where �max(ATA) denotes maximum magnitude eigenvalue or the spectral radius of ATA.

6.2 Other Matrix Norms

Other commonly used matrix norms are

� 1-norm: Maximum over column sums

jjAjj1 =
max

1 � j � n

"
nX
i=1

jaijj
#

(113)

� 1�norm: Maximum over row sums

jjAjj1 =
max

1 � i � n

"
nX
j=1

jaijj
#

(114)
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Remark 52 There are other matrix norms, such as Frobenious norm, which are not induced
matrix norms. Frobenious norm is de�ned as

jjAjjF =
"

nX
i=1

nX
j=1

jaijj2
#1=2

7 Summary

In this chapter, some fundamental concepts from functional analysis have been reviewed.

We begin with the concept of a general vector space and de�ne various algebraic and geo-

metric structures like norm and inner product. We then move to de�ne inner product, which

generalizes the concept of dot product, and angle between vectors. We also interpret the

notion of orthogonality in a general inner product space and develop Gram-Schmidt process,

which can generate an orthonormal set from a linearly independent set. De�nition of inner

product and orthogonality paves the way to generalize the concept of projecting a vector

onto any sub-space of an inner product space. In the end, we discuss induced matrix norms,

which play an important role in the analysis of numerical schemes.

8 Exercise

1. While solving problems using a digital computer, arithmetic operations can be per-

formed only with a limited precision due to �nite word length. Consider the vector

space X � R and discuss which of the laws of algebra (associative, distributive, com-
mutative) are not satis�ed for the �oating point arithmetic in a digital computer.

2. Show that the solution of the di¤erential equation

d2x

dt2
+ x = 0

is a linear space. What is the dimension of this space?

3. Show that functions 1, exp(t), exp(2t), exp(3t) are linearly independent over any in-

terval [a,b].

4. Does the set of functions of the form

f(t) = 1=(a+ bt)

constitute a linear vector space?
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5. Give an example of a function which is in L1[0; 1] but not in L2[0; 1]:

6. Decide linear dependence or independence of

(a) (1,1,2), (1,2,1), (3,1,1)

(b)
�
x(1) � x(2)

�
;
�
x(2) � x(3)

�
;
�
x(3) � x(4)

�
;
�
x(4) � x(1)

�
for any x(1);x(2);x(3);x(4)

(c) (1,1,0), (1,0,0), (0,1,1), (x,y,z) for any scalars x,y,z

7. Describe geometrically the subspaces of R3 spanned by following sets

(a) (0,0,0), (0,1,0), (0,2,0)

(b) (0,0,1), (0,1,1), (0,2,0)

(c) all six of these vectors

(d) set of all vectors with positive components

8. Consider the space X of all n�n matrices. Find a basis for this vector space and show
that set of all lower triangular n� n matrices forms a subspace of X:

9. Determine which of the following de�nitions are valid as de�nitions for norms in

C(2)[a; b]

(a) max jx(t)j+max jx0(t)j
(b) max jx0(t)j
(c) jx(a)j+max jx0(t)j
(d) jx(a)jmax jx(t)j

10. In a normed linear space X the set of all vectors x 2X such that kx�xk � 1 is called
unit ball centered at x:

(a) Sketch unit balls in R2 when 1, 2 and 1 norms are used.

(b) Sketch unit ball in C[0,1] when maximum norm is used.

(c) Can you draw picture of unit ball in L2[0; 1]?

11. Two norms k:ka and k:kb are said to be equivalent if there exists two positive constants
c1 and c2;independent of x; such that

c1 kxka � kxkb � c2 kxka

Show that in Rn the 2 norm (Euclidean norm) and 1�norm (maximum norm) are

equivalent.
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12. Show that

jkxk � kykj � kx� yk

13. A norm k:kais said to be stronger than another norm k:kbif

lim

k !1
x(k)

a
= 0) lim

k !1
x(k)

b
= 0

but not vice versa. For C[0,1], show that the maximum norm is stronger than 2 norm.

14. Show that function kxk2;W : Rn ! R de�ned as

kxk2;W =
p
xTWx

de�nes a norm on when W is a positive de�nite matrix.

15. Consider X = R3 with hx;yi = xTWy: Given a set of three linearly independent

vectors in R3

x(1) =

264 12
1

375 ; x(2) =
264 32
1

375 ; x(3) =
264 12
3

375
we want to construct and orthonormal set. Applying Gram Schmidt procedure,

hx;yiW = xTWy

W =

264 2 �1 1

�1 2 �1
1 �1 2

375
16. Gram-Schmidt Procedure in C[a,b]: Let X represent set of continuous functions

on interval 0 � t � 1 with inner product de�ned as

hx(t);y(t)i =
1Z
0

w(t)x(t)y(t)dt

Given a set of four linearly independent vectors

x(1)(t) = 1; x(2)(t) = t; x(3)(t) = t2;

�nd orthonormal set of vectors if (a) w(t) = 1 (Shifted Legandre Polynomials) (b)

w(t) = t(1� t) (Jacobi polynomials).
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17. Show that in C[a,b] with maximum norm, we cannot de�ne an inner product hx;yi
such that hx;xi1=2 = kxk1 : In other words, show that in C[a; b] the following function

hf(t);g(t)i = max

t
jx(t)y(t)j

cannot de�ne an inner product.

18. In C(1)[a; b] is

hx;yi =
bZ
a

x0(t)y0(t)dt+ x(a)y(a)

an inner product?

19. Show that in C(1)[a; b] is

hx;yi =
bZ
a

w(t)x(t)y(t)dt

with w(t) > 0 de�nes an inner product.

20. Show that parallelogram law holds in any inner product space.

kx+ yk2 + kx� yk2 = 2 kxk2 + 2 kyk2

Does it hold in C[a,b] with maximum norm?
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