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1 Introduction

In this module, we develop solution techniques for numerically solving ordinary di¤erential

equations (ODE) of the form

dx

d�
= F (x; �) (1)

x(0) = x0 (2)

where x 2 Rn; F (:; :) : Rn ! Rn represents function vector, x(0) denotes the initial condition

and � denotes independent variable such as time or space. The problem at hand is to develop

numerical approximation for solution over [0; �]; which can be expressed as the following

integral equation

x(�) = x�0 +

Z �

0

F [x(�); � ]d�

There are two basic approaches to solving ODE-IVPs numerically:

� Taylor series expansion, which forms the basis of Runge - Kutta class of methods

� Polynomial interpolation, which forms the basis of multi-step (or predictor - corrector)
methods and orthogonal collocations

In this module, we describe these methods in detail. In the remaining part of this module,

we use t as the independent variable. While it is convention to use this variable to denote

time, the algorithm developed are general and can be applied even when the independent

variable represents spatial dimension.

It may appear that the form given by equations (1-2) is somewhat restrictive or a special

class of the set of ODEs as the L.H.S. involves only the �rst order derivatives. In practice,

not all models appear as �rst order ODEs. In general, one can get an m�th order ODE of

the type:

dmy

dtm
= f [y;

dy

dt
;
d2y

dt2
; :::::;

dm�1y

dtm�1
; t] (3)

Given y(0); ::::::
dm�1y

dtm�1
(0) (4)

Now, do we develop separate methods for each order? It turns out that such a exercise in

unnecessary as a m�th order ODE can be converted to m �rst order ODEs. Thus, we can
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de�ne auxiliary variables
x1(t) = y(t)

x2(t) =
dy

dt
:::::::

:::::::

xm(t) =
dm�1y

dtm�1

(5)

Using these variables, the original mth order ODE can be converted to m �rst order ODE�s

as,
dx1
dt

= x2
dx2
dt

= x3

:::::::
dxm�1
dt

= xm
dxm
dt

= f [x1; x2; x3; :::; xm; t]

(6)

De�ning function vector

F (x) =

26664
x2

:::::

xm

f [x1; x2; x3; ::; xm; t]

37775 (7)

we can write the above set of

dx

dt
= F (x; t) (8)

x(0) =

�
y(0)

dy

dt
(0):::::::

dm�1y

dtm�1
(0)

�T
(9)

Thus, it is su¢ cient to study only the solution methods for solving n �rst order ODE�s of

the form (1-2). Any set of higher order ODEs can be reduced to a set of �rst order ODEs.

Also, forced systems (non-homogeneous systems) can be looked upon as unforced systems

(homogenous systems) with time varying parameters. For example, consider a system of

ODEs

dx

dt
= F (x; u(t)) (10)

x(0) = x0 (11)

where u 2 R represents system input, such as inlet �ow to a reactor or inlet temperature.

A typical simulation problem is to investigate system dynamics when the independent input
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u(t) is speci�ed, say u(t) = sin(!t) for t > 0:With the input u(t) speci�ed, the ODE can be

represented as follows

dx

dt
= F (x; sin(wt)) = FT (x; t) (12)

x(0) = x0 (13)

where FT (x; t) is a function of states and time. Thus, it is su¢ cient to study the solution

methods for homogenous set of equations of the type (1-2).

2 Existence, Uniqueness and Continuity of Solutions

[1]

Before we begin developing numerical solutions to the problem at hand, it is necessary to

get some insights into the conditions under which a solution exists for the given set of ODE-

IVPs. Given a mathematical model described by ODEs, for it to be useful it must have

solution. So, the primary concern, is under what conditions solutions exist? Moreover, a

mathematical model typically describes behavior of some real physical system. Our experi-

ence with experiments with many real systems indicates that if we repeat an experiment with

exactly identical initial and other environmental conditions, then we get exactly identical

behavior. For example, a pendulum released from same initial angle will oscillate exactly in

same manner if other conditions during repeated experiments are maintained identical. This

implies that, given an initial condition, the mathematical model should generate exactly one

solution. This aspect is referred to as uniqueness of the solution. In practice, it is impos-

sible to carry out two experiments in exactly identical manner. We, however, know from

experience that if the experiments are carried out under almost similar conditions, then the

outcome of the experiments will be almost similar. In mathematical parlance, the solution of

the ODE-IVP should depend continuously on the initial conditions. Thus, a mathematical

model of a physical process should have the following three properties [1]

� Existence: A solution satisfying the given initial condition should exist

� Uniqueness: Each set of initial condition should yield a unique solution

� Continuity: The solution should depend continuously on the initial condition

Given a mathematical model of the form
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dx

dt
= F (x; t) (14)

x(t0) = x0 (15)

let D de�ne a region in (n+1) dimensional space

D = f(t;x) : jt� t0j < T; kx� x0k < �g

i.e. interior of a (n+1) dimensional box or cylinder. The following important results provides

su¢ cient conditions for existence of solution of the ODE-IVP.

Example 1 Let x 2 R2; t0 = 0 ,T � 1; x0 � (0; 0) and � = 1.Then, using 2-norm on R2;

we have

D =
�
(t;x) : jtj <1; :

q
x21 + x

2
2 < 1

�
which corresponds interior of cylinder of in�nite length in 3 dimensional space consisting of

(t; x1; x2): Alternatively, using 1� norm; we have

D = f(t;x) : jtj <1; :: jx1j+ jx2j < 1g

which represents an in�nite channel with square cross section 3 dimensional space (t; x1; x2):

Theorem 2 [1] Let vectors F (x; t) and @F (x; t)=@xk (k = 1; 2; :::n) be continuous on region
D:Then given, any point (ex; t0) 2 D; there exists a unique solution,�(t); of the system (14-

15) satisfying the initial condition �(t0) = ex: The solution exists on any interval containing
t0; for which the point (t,�(t)) 2 D: Furthermore, the solution is a continuous function of
the triple (t; t0; ex):
It may be noted that the theorem does not require us to compute the solution explicitly.

If we can assert continuity of the vectors F (x; t) and @F (x; t)=@xk in desired region of the

state space, then we are assured of the existence of a solution, the uniqueness of the solution

and continuity of the solution with respect to (t; t0; ex). If region D is the entire (t;x) space,
then every solution exists as long as its norm remains �nite.

Example 3 [1]Consider ODE-IVP given by the following set of coupled equations .

d

dt

264 x1x2
x3

375 = F (x; t) =
264 tx2 + x3

cos(t)x1 + t
2x3

x1 � x2

375
6



@F (x; t)

@x1
=

264 0

cos(t)

1

375 ;
@F (x; t)

@x2
=

264 t

0

�1

375 ;
@F (x; t)

@x3
=

264 1

t2

0

375
It is easy to see that vectors F (x; t) and @F (x; t)=@xk (k = 1; 2; 3) are continuos functions

for jtj <1 and kxk <1: Thus, D is entire R�R3 and using Theorem 1, through any point
(t; ex) 2 R�R3; there passes a unique solution on some interval containing t0:
3 Analytical Solutions of Linear ODE-IVPs

Before developing numerical schemes for solving ODE IVPs, we consider a special sub-class

of ODE IVPs, i.e. linear multi-variable ODE-IVPs, which can be solved analytically. The

reason for considering this sub-class is two fold:

� A set of nonlinear ODE-IVPs can often be approximated locally as a set of linear ODE-
IVPs using Taylor series approximation. Thus, it provides insights into how solutions

of a nonlinear ODE-IVP evolve for small perturbations

� Since the solution of a linear ODE-IVP can be constructed analytically, it proves to
be quite useful while understanding stability behavior of numerical schemes for solving

ODE-IVPs.

Consider the problem of solving simultaneous linear ODE-IVP

dx

dt
= Ax; (16)

x = x(0) at t = 0 (17)

x 2 Rm; A is a (m�m) matrix

To begin with, we develop solution for the scalar case and generalize it to the multivariable

case.

3.1 Scalar Case

Consider the scalar equation

dx

dt
= ax; (18)

x (t = 0) = x(0) (19)

Let the guess solution to this IVP be

x(t) = e�tv ; v 2 R (20)
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Now,

x = x(0) at t = 0) v = x(0) (21)

or x(t) = e�tx(0) (22)

This solution also satis�es the ODE, i.e.

dx

dt
= �

�
e�tx(0)

�
= �x(t) = ax(t) (23)

) � = a and x(t) = eatx(0) (24)

Asymptotic behavior of solution can be predicted using the value of parameter a as follows

� Unstable behavior: a > 0) x(t) = eatx(0)!1 as t!1

� Stable behavior:a < 0) x(t) = eatx(0)! 0 as t!1

3.2 Vector case

Now consider system of equations given by equation (16). Taking clues from the scalar case,

let us investigate a candidate solution of the form

x(t) = e�tv; v 2 Rm (25)

where v is a constant vector. The above candidate solution must satisfy the ODE, i.e.,

d

dt
(e�tv) = A(e�tv)

) �ve�t = Ave�t
(26)

Cancelling e�t from both the sides, as it is a non-zero scalar, we get an equation that vector

v must satisfy,

�v = Av (27)

This fundamental equation has two unknowns � and v and the resulting problem is the well

known eigenvalue problem in linear algebra. The number � is called the eigenvalue of the

matrix A and v is called the eigenvector. Now, �v = Av is a non-linear equation as �

multiplies v. if we discover � then the equation for v would be linear. This fundamental

equation can be rewritten as

(A� �I)v = 0 (28)

This implies that vector v should be ? to the row space of (A� �I). This is possible only
when rows of (A� �I) are linearly dependent. In other words, � should be selected in such
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a way that rows of (A � �I) become linearly dependent, i.e., (A � �I) is singular. This
implies that � is an eigenvalue of A if and only if

det(A� �I) = 0 (29)

This is the characteristic equation of A and it has m possible solutions �1; :::::; �m: Thus,

corresponding to each eigenvalue �i, there is a vector v(i) that satis�es (A � �iI)v(i) = 0:

This implies that each vector e�itv(i) is a candidate solution to equation (16). Now, suppose

we construct a vector as lineal combination of these fundamental solutions, i.e.

x(t) = c1e
�1tv(1) + c2e

�2tv(2) + :::::::+ cme
�mtv(m) (30)

Then, it can be shown that x(t) also satis�es equation (16). Thus, a general solution to the

linear ODE-IVP can be constructed as a linear combination of the fundamental solutions

e�itv(i).

The next task is to see to it that the above equation reduces to the initial conditions at

t = 0. De�ning vectors C and matrix 	 as

C =
h
c1 c2 ::: cm

iT
; 	 =

h
v(1) v(2) ::::: v(m)

i
(31)

we can write

x(0) = 	C (32)

If the eigenvectors are linearly independent,

C = 	�1x(0) (33)

Thus the solution can be written as

x(t) = [e�1tv(1) e�2tv(2):::::::e�mtv(m)]	�1x(0)

) x(t) = [v(1) v(2):::::v(m)]

26664
e�1t 0 ::: 0

0 e�2t ::: 0

::: ::: ::: :::

0 0 0 e�mt

37775	�1x(0) (34)

Now let us de�ne the matrix exp(At) as follows

eAt = I + At+
1

2!
(At)2 + ::::::: (35)

Using the fact that matrix A can be diagonalized as

A = 	�	�1 (36)
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where matrix � is

� = diag
h
�1 �2 :::: �m

i
we can write

eAt = 		�1 +	�	�1t+ 1
2!
	�2	�1t2 + :::

= 		�1 +	�	�1t+ 1
2!
	�2	�1t2 + :::

= 	e�t	�1
(37)

Here, the matrix e�t is limit of in�nite sum

e�t = I + t� + 1
2!
t2�2 + :::

=

26664
e�1t 0 ::: 0

0 e�2t ::: 0

::: ::: ::: :::

0 0 0 e�mt

37775 (38)

Thus, equation (34) reduces to

x(t) = 	e�t	�1x(0) (39)

With this de�nition, the solution to the ODE-IVP can be written as

x(t) = 	e�t	�1x(0) = eAtx(0) (40)

3.3 Asymptotic behavior of solutions

In the case of linear multivariable ODE-IVP problems, it is possible to analyze asymptotic

behavior of the solution by observing eigenvalues of matrix A.

x(t) = c1e
�1tv(1) + c2e

�2tv(2) + :::::::+ cme
�mtv(m)

C = 	�1x(0)
(41)

Let �j = �j + i�j represent j�th eigenvalue of matrix A: Then, we can write

e�jt = e�jt:ei�jt = e�jt[cos �jt+ i sin �jt] (42)

As ��[cos �jt+ i sin �jt]�� � 1 for all t and all j (43)

the asymptotic behavior of the solution x(t) as t ! 1 is governed by the terms e�jt: We

have following possibilities here

� If �j < 0 then e�jt ! 0 as t!1

� If �j > 0 then e�jt !1 as t!1
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� If �j = 0 then e�jt ! 1 as t!1

Thus, we can deduce following three cases

� Case A: jjx(t)jj ! 0 as t ! 1 if and only if Re(�i) < 0 for i = 1; 2; :::::::m (Asymp-

totically stable solution)

� Case B: jjx(t)jj �M <1 as t!1 if and only ifRe(�i) � 0 for i = 1; 2; :::::::m (Stable

solution)

� Case C: jjx(t)jj ! 1 at t!1 if for any �i;Re(�i) > 0 for i = 1,2,.......n (Unstable

solution)

Note that asymptotic dynamics of linear ODE-IVP is governed by only eigenvalues of

matrix A and is independent of the initial state x(t): Thus, based on the sign of real part

of eignvalues of matrix A; the ODE-IVP is classi�ed as asymptotically stable, stable or

unstable.

3.4 Local Analysis of Nonlinear Systems

The above approach can be extended to obtain local or perturbation solutions of nonlinear

ODE-IVP systems
dx

dt
= F [x(t); u(t)] ; x = x(0) at t = 0 (44)

in the neighborhood of a steady state point x such that

F (x) = 0 (45)

Using Taylor expansion in the neighborhood of x and neglecting terms higher that �rst order,

equation (44) can be approximated as

d(x� x)
dt

=

�
@F

@x

�
x=x

(x� x)
d�x

dt
= A �x ; �x(0) = x(0)� x

A =

�
@F

@x

�
x=x

(46)

Note that the resulting equation is a linear multivariable system of type (16) and the per-

turbation solution can be computed as

�x(t) = eAt�x(0)

x(t) = x+ �x(t)
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Example 4 Stirred Tank Reactor

The system under consideration is a Continuous Stirred Tank Reactor (CSTR) in which

a non-isothermal, irreversible �rst order reaction

A �! B

is taking place. The dynamic model for a non-isothermal CSTR is given as follows :

dCA
dt

=
F

V
(CA0 � CA)� k0 exp(�

E

RT
)CA (B.1)

dT

dt
=

F

V
(T0 � T ) +

(��Hr) k0
�Cp

exp(� E

RT
)CA �

Q

V �Cp
(B.2)

Q =
aF b+1c

Fc +

�
aF bc
2�cCpc

� (T � Tcin) (B.3)

This system exhibits entirely di¤erent dynamic characteristics for di¤erent set of parameter

values (Marlin, 1995). The nominal parameter values and nominal steady state operating

conditions of the CSTR for the stable and unstable operating points are given in Table

1.

Table 1: Model Parameters and Nominal Operating Conditions of CSTR

Parameter (#)Operating Point (!) Stable Unstable

Reaction rate constant (k0) min�1 1010 1010

Inlet concentration of A (CA0) kmol=m3 2.0 2.0

Steady state �ow rate of A (F ) m3=min 1.0 1.0

Density of the reagent A(�) g=m3 106 106

Speci�c heat capacity of A(Cp) cal=g0C 1.0 1.0

Heat of reaction (�Hr) cal=kmol �130 � 106 �130 � 106

Density of the coolant (�c) g=m3 106 106

Speci�c heat capacity of coolant (Cpc) cal=g0C 1.0 1.0

Volume of the CSTR(V ) m3 1.0 1.0

Coolant �ow rate (Fc) m3=min 15 15

Inlet temperature of the coolant (Tcin ) 0K 365 365

Inlet temperature of A (T0) 0K 323 343

Reactor temperature (T ) K 393.954 349.88

Reactor concentration of A (CA) kmol=m3 0.265 1.372

a 1:678X106 0:516X106

Reaction Rate Parameter (E=R ) (0K)�1 8330 8330

b 0.5 0.5
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� Perturbation model at stable operating point

d

dt

"
�CA

�T

#
=

"
�7:559 �0:09315
852:7 5:767

#"
�CA

�T

#

Eigenvalues of
�
@F

@x

�
x=x

are

�1 = �0:8960 + 5:9184i ; �2 = �0:8960� 5:9184i

and all the trajectories for the unforced system (i.e. when all the inputs are held

constant at their nominal values) starting in the neighborhood of the steady state

operating point converge to the steady state.

� Perturbation model at unstable operating point

d

dt

"
�CA

�T

#
=

"
�1:889 �0:06053
115:6 2:583

#"
�CA

�T

#

Eigenvalues of
�
@F

@x

�
x=x

are

�1 = 0:3468 + 1:4131i ; �2 = 0:3468� 1:4131i

and all the trajectories for the unforced system starting in any small neighborhood of

the steady state operating point diverge from the steady state.

4 Numerical Solution Schemes: Basic Concepts

4.1 Marching in Time

Let fx�(t) : 0 � t � tfg denote the true / actual solution of the above ODE-IVP. In general,
for a nonlinear ODE, it is seldom possible to obtain the true solution analytically. The aim

of numerical methods is to �nd an approximate solution numerically. Let t1; t2; :::::::; tn be a

sequence of numbers such that

0 < t1 < t2 < ::::::: < tn < :::: < tf

Instead of attempting to approximate the function x�(t); which is de�ned for all values of

t such that 0 � t � tf , we attempt to approximate the sequence of vectors fx�(tn) : n =

13



1; :::::::fg: Thus, in order to integrate over a large interval 0 � t � tf ;we solve a sequence of
ODE-IVPs subproblems

dx

dt
= F (x; t) ; x(tn) = x(n) ;

tn � t � tn+1 ; (n = 1; 2; ::::::f)

each de�ned over a smaller interval [tn; tn+1] : This generates a sequence of approximate

solution vectors fx(tn) : n = 1; :::::::fg: The di¤erence hn = tn � tn�1 is referred to as the
integration step size or the integration interval. Two possibilities can be considered regarding

the choice of the sequence ftng

� Fixed integration interval: The numbers tn are equispaced, i.e., tn = nh for some h > 0

� Variable size integration intervals

For the sake of convenience, we introduce the following notation

F (n) � F [x(tn); tn] (47)

x(n) � x(tn) (48)�
@F

@x

�
n

�
�
@F

@x

�
(x(tn);tn)

(49)

and use it throughout in the rest of the text.

4.2 Two Solution Approaches : Implicit and Explicit

There are two basic approaches to numerical integrations. To understand these approaches,

consider the integration of the equation (1) over the interval [tn; tn+1] using Euler�s method.

Let us also assume that the numbers tn are equi-spaced and h is the integration stepsize.

� Explicit Euler method:If the integration interval is small,

dx

dt
�=
x(n+ 1)� x(n)

h
= F [x(n); tn]

x(n+ 1) = x(n) + hF (n)

for n = 0; 1; :::::::; n� 1

(50)

The new value x(n + 1) is a function of only the past value of x i.e., x(n). This type

of numerical scheme is called explicit as it does not involve iterative calculations while

moving forward in time.
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Table 1: Implicit Euler Method: Iterative Computations
Initialize: x(0); tf ; h; ";N = tf=h

FOR n = 0 TO N-1

x(0)(n+ 1) = x(n) + hF [x(n); tn]

WHILE ( � > ")

x(k+1)(n+ 1) = x(n) + hF [x(k)(n+ 1); tn+1]

� =
jjx(k+1)(n+ 1)� x(k)(n+ 1)jj

jjx(k)(n+ 1)jj
END WHILE

x(n+ 1) = x(k)(n+ 1)

END FOR

� Implicit Euler method:

dx

dt
�=
x(n+ 1)� x(n)

h
= F [x(n+ 1); tn+1]

x(n+ 1) = x(n) + hF (n+ 1);

for n = 0; 1; :::::::; n� 1

(51)

Each of the above equation has to be solved by iterative method. For example if we

use successive substitution method for solving the resulting nonlinear equation(s), the

algorithm is summarized in Table 1. This type of numerical scheme is called implicit

as it involves iterative calculations while moving forward in time.

5 Numerical Methods Based On Taylor Series Expansion[2]

Consider a simple scalar case
dx

dt
= f(x; t) ; x 2 R (52)

Suppose we know the exact solution x�(tn) = x�(n) and the integration step size h is selected

su¢ ciently small, then we can compute x�(n+1) using Taylor series expansion with respect

to independent variable t as follows:

x�(n+ 1) = x�(tn + h) (53)

= x�(n) + h
dx�(tn)

dt
+
1

2!
h2
d2x�(tn)

dt2
+ ::::::: (54)
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The various derivatives in the above series can be calculated using the di¤erential equation,

as follows:

dx�(tn)

dt
= f [tn; x

�(n)] (55)

d2x�(tn)

dt2
=

df [tn; x
�(n)]

dt
(56)

and so on. Now, the exact di¤erential of f(x; t) i.e.

df =

�
@f

@x

�
dx+

@f

@t
dt

we can write

d2x�(tn)

dt2
=

�
@f

@x

�
(x�(n);tn)

dx�(tn)

dt
+
@f [x�(n); tn]

@t
(57)

=

�
@f

@x

�
(x�(n);tn)

f [x�(n); tn] +
@f [x�(n); tn]

@t
(58)

Let us now suppose that, instead of actual solution x�(n), we have available an approximation

to x�(n), denoted as x(n). With this information, we can construct x(n+ 1); as follows

x(n+ 1) = x(n) + hf(n) +
h2

2

��
@f

@x

�
n

f(n) +

�
@f

@t

�
n

�
+ ::::: (59)

We can now make a further approximation by truncating the in�nite series. If the Taylor

series is truncated after the term involving hk, then the Taylor�s series method is said to be

of order k.

� Order 1(Euler explicit formula)

x(n+ 1) = x(n) + hf(n) (60)

� Order 2
x(n+ 1) = x(n) + hf(n) +

h2

2

��
@f

@x

�
n

f(n) +

�
@f

@t

�
n

�
(61)

Taylor�s series methods are useful starting points for understanding more sophisticated

methods, but are not of much computational use. First order method is too inaccurate and

the higher order methods require calculation of a lot of partial derivatives.
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5.1 Univariate Runge-Kutta (R-K) Methods [2]

Runge-Kutta methods duplicate the accuracy of the Taylor series methods, but do not require

the calculation of higher partial derivatives. For example, consider the second order method

that uses the formula

x(n+ 1) = x(n) + h(ak1 + bk2) (62)

k1 = f(tn; x(n)) = f(n) (63)

k2 = f(tn + �h; x(n) + �hk1) (64)

The real numbers a; b,�; �; are chosen such that the RHS of (62) approximates the RHS of

Taylor series method of order 2 (ref. 61). To see how this is achieved, let k2 be represented

as

k2 = f(tn +�t; x(n) + �x(n)) (65)

where �t = �h and �x(n) = �hk1, and consider the Taylor series expansion of the function

k2, about (tn; x(n))

k2 = f(tn; x(n)) +

�
@f

@t

�
n

(�t) +

�
@f

@x

�
n

�x(n) +O(h2) (66)

= f(n) +

�
@f

@t

�
n

(�h) +

�
@f

@x

�
n

[�hf(n)] +O(h2) (67)

where subscript n denotes that the corresponding derivatives have been computed at (tn; x(n)):

Substituting the Taylor series expansion in equation (62), we have

x(n+ 1) = x(n) + ahf(n)

+bh

�
f(n) +

�
@f

@t

�
n

(�h) +

�
@f

@x

�
n

[�hf(n)]

�
+O(h3) (68)

x(n+ 1) = x(n) + (a+ b)hf(n) +

�
@f

@t

�
n

�
�bh2

�
+

�
@f

@x

�
n

�
�bh2f(n)

�
+O(h3) (69)

Comparing 61 and 69, we arrive at the following set of constraints on the parameters

a+ b = 1

�b = �b =
1

2

(70)

Thus, there are 4 unknowns and 3 equations and we can choose one variable arbitrarily. Let

us select variable b as the one that can be set arbitrarily. With this choice, we have

a = 1� b; � =
1

2b
; � =

1

2b
(71)
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together with the condition b 6= 0: Thus, the general 2nd order algorithm can be stated as

x(n+ 1) = x(n) + h

�
(1� b)f(n) + bf

�
tn +

h

2b
; x(n) +

h

2b
f(n)

��
(72)

� Heun�s modi�ed algorithm:Set b = 1/2.

x(n+ 1) = x(n) + h

�
(
1

2
f(n) +

1

2
f (tn + h; x(n) + hf(n))

�
(73)

� Modi�ed Euler-Cauchy Method: Set b = 1.

x(n+ 1) = x(n) + hf

�
tn +

h

2
; x(n) +

h

2
f(n)

�
(74)

It must be emphasized that 72. and 61 do not give identical results. However, if we start

from the same x(n), then x(n+ 1) given by 61 and 72 would di¤er only by O(h3):

The third and higher order methods can be derived in an analogous manner. The general

computational form of the third order method can be expressed as follows

x(n+ 1) = x(n) + h(ak1 + bk2 + ck3) (75)

k1 = f(tn; x(n)) = f(n) (76)

k2 = f(tn + �h; x(n) + �hk1) (77)

k3 = f(tn + h; x(n) + �hk2) (78)

The parameters (a; b; c; �; �; ; �) are chosen such that the RHS of (75) approximates the

RHS of Taylor series method of order 3.

5.2 Multivariate R-K Methods

Even though the above derivation has been worked for one dependent variable case, the

method can be easily extended to multi-variable case. For example, the most commonly

used fourth order R-K method for one variable can be stated as

x(n+ 1) = x(n) +
h

6
(k1 + 2k2 + 2k3 + k4) (79)

k1 = f(tn; x(n)) = f(n) (80)

k2 = f

�
tn +

h

2
; x(n) +

h

2
k1

�
(81)

k3 = f

�
tn +

h

2
; x(n) +

h

2
k2

�
(82)

k4 = f (tn + h; x(n) + hk3) (83)
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Now, suppose we want to use this method for solving m simultaneous ODE-IVPs

dx

dt
= F(x; t) (84)

x(0) = x0 (85)

where x 2 Rm and F (x; t) is a m � 1 function vector. Then, the above algorithm can be

modi�ed as follows

x(n+ 1) = x(n) +
h

6
(k1 + 2k2 + 2k3 + k4) (86)

k1 = F (tn;x(n)) = F(n) (87)

k2 = F

�
tn +

h

2
;x(n) +

h

2
k1

�
(88)

k3 = F

�
tn +

h

2
;x(n) +

h

2
k2

�
(89)

k4 = F (tn + h;x(n) + hk3) (90)

Note that k1;k2;k3 and k4 are n� 1 function vectors.
Note that Runge-Kutta methods can be implemented using variable step size with accu-

racy monitoring. Thus, these methods (with variable step size implementation) are preferred

when x(t) is expected to change rapidly in some regions and slowly in others.

6 Numerical Methods Based on Polynomial Interpola-

tion [2]

6.1 Multi-step Methods

The multi-step methods are based on polynomial interpolation. We approximate the solution

of a given di¤erential equation by a polynomial in the independent variable t. To understand

how this is achieved, consider the scalar di¤erential equation

dx

dt
= f(x; t) ; x(tn) = x(n); x 2 R (91)

with uniformly spaced integration (time) intervals: At time t = tn; we have the state and

the derivative information in the �past�i.e.

fx(n); x(n� 1); x(n� 2):::::::::x(0)g

and

ff(n); f(n� 1); f(n� 2):::::::::f(0)g
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which can be used to construct the interpolation polynomial. We approximate x(t) in the

neighborhood of t = tn by constructing a local polynomial approximation of type

xn(t) = a0(n) + [a1(n)] t+ [a2(n)] t
2 + :::::+ [am(n)] t

m (92)

and use it to estimate or extrapolate x(n+1): The coe¢ cients of the polynomial are computed

using the state and the derivative information from the past and possibly f(n+1). It may be

noted that time index (n) is included in the representation of the polynomial coe¢ cients to

highlight the fact that these coe¢ cients are time varying. In other words, at each integration

step, we compaute a separate local interpolation polynomial and use it for local extrapolation

or estimation.

To begin with, let us consider a simple case where we want to construct a second order

interpolation polynomial of the form

xn(t) = a0(n) + [a1(n)] t+ [a2(n)] t
2 (93)

at instant t = tn: This implies the derivative f(x; t) at time t can be computed as

f(x; t) =
dxn(t)

dt
= a1(n) + 2a2(n) t (94)

For the sake of computational convenience, we choose a shifted time scale as, � = t� tn; it
follows that

t = tn � � = 0 ; t = tn+1 � � = h (95)

t = tn�1 � � = �h ; t = tn�2 � � = �2h (96)

Now, there are several ways we could go about estimating the unknown parameters of the

polynomial.

� Explicit algorithm: Let us use only the current and the past information of state
and derivatives, which will lead to an explicit algorithm.

f(n� 1) = a1(n)� 2ha2(n)
f(n) = a1(n) (97)

x(n) = a0(n) (98)

Solving above equations simultaneously, we get coe¢ cients

a0(n) = x(n) ; a1(n) = f(n) ; a2(n) =
f(n)� f(n� 1)

2h
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and the interpolation polynomial with time varying coe¢ cients can be expressed as

follows

x(�) = x(n) + [f(n)] � +

�
f(n)� f(n� 1)

2h

�
� 2

This interpolation polynomial can be used to extrapolate the value of x(t) at t = tn+1
i.e. � = h as

x(n+ 1) = x(h)

= x(n) + f(n)h+

�
f(n)� f(n� 1)

2h

�
h2

= x(n) + h

�
3

2
f(n)� 1

2
f(n� 1)

�
� Implicit algorithm: Alternatively, we can choose to estimate x(n + 1) based on
derivative at tn+1;i.e.

f(n+ 1) = a1(n) + 2a2(n)h (99)

f(n) = a1(n) (100)

x(n) = a0;n (101)

These equations yield following set of coe¢ cients

a0(n) = x(n) ; a1(n) = f(n) ; a2(n) =
f(n+ 1)� f(n)

2h

and the interpolation polynomial solution can be expressed as follows

x(�) = x(n) + [f(n)] � +

�
f(n+ 1)� f(n)

2h

�
� 2

and x(n+ 1) can be estimated as

x(n+ 1) = x(h)

= x(n) + [f(n)] h+

�
f(n+ 1)� f(n)

2h

�
h2

The above expression can be rearranged as

x(n+ 1) = x(n) +
h

2
[f(n) + f(n+ 1)]

which is popularly known as trapezoidal rule or Crank-Nicholson algorithm.
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Let us consider using a higher order interpolation polynomial, say a 4�th order polynomial

of the form

xn(�) = a0(n) + [a1(n)] � + [a2(n)] �
2 + [a3(n)] �

3 + [a4(n)] �
4 (102)

There �ve unknown coe¢ cients, a0(n); :::a4(n) of the interpolation polynomial and we need

to generate �ve equations for estimating these coe¢ cients. There are several ways by which

we can construct these equations. For example, we can use any one of the following sets to

arrive at these equations

fx(n); x(n� 1); x(n� 2); x(n� 3); f(n)g
ff(n); f(n� 1); f(n� 2); f(n� 3); x(n)g
fx(n); x(n� 1); f(n); f(n+ 1); f(n� 1)g

and there are more such possibilities. In particular, let us consider the last set and proceed

with derivation of the polynomial coe¢ cients.

� = 0 : x(n) = a0(n) and f(n) = a1(n) (103)

� = h : f(n+ 1) = a1(n) + 2ha2(n) + 3h
2a3(n) + 4h

3 [a4(n)] (104)

� = �h : f(n� 1) = a1(n)� 2ha2(n) + 3h2a3(n)� 4h3 [a4(n)] (105)

Combining equations (103), (104) and (105) yields

a3(n) =
f(n+ 1)� 2f(n) + f(n� 1)

6h2
(106)

Also, at � = �h; we have

x(n� 1) = a0(n)� [a1(n)] h+ [a2(n)] h2 � [a3(n)] h3 + [a4(n)] h4

which, are rearranging yields

[a2(n)] h+ [a4(n)] h
3 = f(n) + [a3(n)] h

2 +
x(n� 1)� x(n)

h

=
f(n+ 1)

6
+
2f(n)

3
+
f(n� 1)

6
+
x(n� 1)� x(n)

h
(107)

Rearrangement of equation (104) yields

2h [a2(n)] + 4h
3 [a4(n)] = f(n+ 1)� f(n)� 3h2 [a3(n)]

=
f(n+ 1)

2
� f(n� 1)

2
(108)
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Using (107) and (108), the remaining two coe¢ cients of the local interpolation polynomial

can be estimated as follows

a2(n) =
1

2h

�
f(n+ 1)

6
+
8f(n)

3
+
7f(n� 1)

6
+
4x(n� 1)� 4x(n)

h

�
(109)

a4(n) =
1

2h3

�
f(n+ 1)

6
� 5f(n� 1)

2
� 4f(n)

3
+
2x(n)� 2x(n� 1)

h

�
(110)

Thus, the 4�th order interpolation polynomial assumes form

xn(�) = x(n) + [f(n)] � +
1

2h

�
f(n+ 1)

6
+
8f(n)

3
+
7f(n� 1)

6
+
4x(n� 1)� 4x(n)

h

�
� 2

+

�
f(n+ 1)� 2f(n) + f(n� 1)

6h2

�
� 3

+
1

2h3

�
f(n+ 1)

6
� 5f(n� 1)

2
� 4f(n)

3
+
2x(n)� 2x(n� 1)

h

�
� 4 (111)

and x(n+ 1) can be estimated by setting � = h i.e.

x(n+ 1) = x(n) + h [f(n)] +
h

2

�
f(n+ 1)

6
+
8f(n)

3
+
7f(n� 1)

6
+
4x(n� 1)� 4x(n)

h

�
+

�
f(n+ 1)� 2f(n) + f(n� 1)

6

�
h

+
1

2

�
f(n+ 1)

6
� 5f(n� 1)

2
� 4f(n)

3
+
2x(n)� 2x(n� 1)

h

�
h (112)

For the purpose of computations, we can rearrange equation (112) as follows

x(n+ 1) = �0x(n) + �1x(n� 1) + h
�
��1f(n+ 1) + �0f(n) + �1f(n� 1)

�
(113)

where

�0 = 0 ; �1 = 1 ; ��1 =
1

3
; �0 =

1

3
; �1 = �

1

2

Thus, after eliminating the polynomial coe¢ cients fa0(n); a1(n); a2(n):::g the expressions for
x(n + 1) involves some linear combination of current and past states fx(n); x(n� 1); ::::g
and derivatives ff(n+ 1); f(n); f(n� 1); ::::g : A more general expression for computational
form of x(n+ 1) can be stated as follows

x(n+ 1) = �0x(n) + �1x(n� 1) + :::::::+ �px(n� p)
+h
�
��1f(n+ 1) + �0f(n) + �1f(n� 1) + ::::+ �pf(n� p)

�
(114)

or

x(n+ 1) =

pX
i=0

�ix(n� i) + h
pX

i=�1
�if(n� i)
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where p is an integer and �i; �i are real numbers to be selected. Note that if ��1 6= 0, we
get an implicit formula for the unknown quantity x(n + 1): Otherwise, we get an explicit

formula. An algorithm of the type 114 is called (p + 1) step algorithm because x(n + 1)

is given in terms of the values of x at previous (p + 1) steps [x(n); ::; x(n� p)] : Order of
the algorithm is the degree of the highest-degree polynomial for which 114 gives an exact

expression of x(n+ 1): To see how this de�nition of order is used, consider the development

of the m�th order algorithm in scalar case. i.e., x 2 R. (similar arguments can be used in
vector case). Suppose polynomial solution of initial value problem is given by

x(t) = a0(n) + a1(n)t+ a2(n)t
2 + :::::+ am(n)t

m =
mX
j=0

aj(n)(t)
j (115)

f(x; t) =
dx

dt
= a1(n) + 2 [a2(n)] t+ ::::::::+m [am(n)] t

m�1 =
mX
j=1

j [aj(n)] (t)
j�1 (116)

De�ning a shifted time scale, � = t� tn; it follows that

t = tn�i � � = �ih (117)

and

x(n+ 1) = x(h) = a0(n) + a1(n)h+ a2(n)h
2 + ::::+ am(n)h

m (118)

x(n� i) = a0(n) + [a1(n)] (�ih) + [a2(n)] (�ih)2 + ::::+ [am(n)] (�ih)m (119)

for i = 0; 1; ::::; p

f(n� i) = a1;n + 2a2;n(�ih) + ::::::::+mam;n(�ih)m�1 (120)

for i = �1; 0; ::::p

Substitution of equations (118),(119) and (120) into (114) gives what is known as the exact-

ness constraints for the algorithm as

mX
j=0

[aj(n)] (h)
j =

pX
i=0

�i

"
mX
j=0

[aj(n)] (�ih)j
#
+ h

pX
i=�1

�i

"
mX
j=1

j [aj(n)] (�ih)j�1
#

=

 
pX
i=0

�i

!
a0(n) +

 
pX
i=0

(�i)�i +
pX

i=�1
(�i)0�i

!
[a1(n)]h+ :::

:::+

 
pX
i=0

(�i)m�i +m
pX

i=�1
(�i)m�1�i

!
[am(n)]h

m (121)
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It may be noted that we would like (121) to hold independently of any stepsize. This is

achieved by equating like powers of h; which gives rise to the following set of constraints

pX
i=0

�i = 1 ; (j = 0) (122)

pX
i=0

(�i)j�i + j
pX

i=�1
(�i)j�1�i = 1 ; (j = 1; 2; :::::::;m) (123)

Note that in the above set of equations it is assumed that (i)j = 1 when i = j = 0: Thus,

equations (122-123) gives m+1 constraints and the number of variables are 2p +3, namely

�0; :::::::�p; ��1; �0; :::::::�p: Any choice of these constants makes the corresponding algorithm

114 exact for m�th order polynomial. In order for the algorithm (114) to be exact in case of

the mth degree polynomial we must have

(m+ 1) � 2p+ 3 (124)

If equality holds, i.e. when

m = 2(p+ 1)

then we can solve for {�ig and f�ig exactly.
Now, let us re-derive the 2�nd order implicit algorithm again using the above approach.

Constraints for this case can be generated by equating coe¢ cients of

a0(n) + [a1(n)]h+ [a2(n)]h
2 =

pX
i=0

�i[a0(n) + [a1(n)] (�ih) + [a2(n)] (�ih)2]

+h

pX
i=�1

�i[a1(n) + 2 [a2(n)] (�ih)] (125)

The resulting constraints are

pX
i=0

�i = 1 (126)

pX
i=0

(�i�i) +
pX

i=�1
�i = 1 (127)

pX
i=0

i2�i +

pX
i=�1

(�2i�i) = 1 (128)

Clearly for (126-128) to hold, we must have 2p + 3 � 3. The second order algorithm with

the smallest number of constants �i; �i is obtained by setting 2p+ 3 = 3, i.e., p = 0. In this
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case, we have
�0 = 1

��1 + �0 = 1

2��1 = 1

(129)

which gives

�0 = 1; ��1 = 1=2; �0 = 1=2 (130)

and the second order algorithm becomes

x(n+ 1) = x(n) +
h

2
[f(n) + f(n+ 1)] (131)

6.1.1 Examples of Multi-step methods

A number of multi-step algorithms can be obtained by making suitable choices of the para-

meters f�ig and f�ig: Some of the popular algorithms are discussed in this sub-section.

Adams-Bashforth Explicit Methods In this class of algorithms, we choose

�1 = �2 = ::::::: = �p = 0 (132)

��1 = 0 (133)

p = m� 1 (134)

These are additional (p+ 1) equations.

Total number of constraints = (m+ 1) + (p+ 1): = 2m+ 1

Total number of variables = (2p+ 3) = 2m+ 1

Out of these, (p + 1 = m) variables are selected to be zero and (m + 1) constants namely,

�0; �0; :::::::�p are to be detected. Using constraints for j = 0,

pX
i=0

�i = 1;) �0 = 1 (135)

Using the other constraints,26664
1 1 ::: 1

0 (�1) ::: (�p)
::: ::: ::: :::

0 (�1)m�1 ::: (�p)m�1

37775
26664
�0
�1
:::

�p

37775 =
26664

1

1=2

:::

1=m

37775 (136)

Solving for the �0s, we can write the algorithm as

x(n+ 1) = x(n) + h
�
�0f(n) + �1f(n� 1) + :::::::+ �pf(n� p)

�
(137)

26



Adam-Moulton Implicit Algorithms In this class of algorithms, we choose

�1 = �2 = ::::::: = �p = 0 (138)

which gives p constraints and set

p = m� 2 (139)

For j = 0, we have

pX
i=0

�i = 1;) �0 = 1 (140)

Remaining m variables ��1; :::::::; �m�2 can be determined by solving26664
1 1 ::: 1

0 (�1) ::: (�p)
::: ::: ::: :::

0 (�1)m�1 ::: (�p)m�1

37775
26664
��1
�0
:::

�p

37775 =
26664

1

1=2

:::

1=m

37775 (141)

The algorithm can be written as

x(n+ 1) = x(n) + h
�
�0f(n) + �1f(n� 1) + :::::::+ �pf(n� p)

�
+ h��1f(n+ 1)(142)

= yn + h��1f [x(n+ 1); tn+1] (143)

where y(n) represents sum of all terms which are known from the past data, i.e.

yn = x(n) + h
�
�0f(n) + �1f(n� 1) + :::::::+ �pf(n� p)

�
(144)

The above implicit equation has to be solved iteratively to obtain x(n+ 1):

6.1.2 Predictor-Corrector Algorithms

We saw that a m step Adams-Bashwforth algorithm is exact for polynomials of order m,

while a m-step Adams-Moulton algorithm is exact for the polynomials of order (m + 1).

However, the Adams-Moulton algorithm is implicit, i.e.,

x(n+ 1) = y(n) + h��1f [x(n+ 1); tn+1] (145)

where the quantity y(n) depends on x(n); :::::::; x(n � p) and is known. The above implicit
equation can be solved iteratively as

x(k+1)(n+ 1) = y(n) + h��1f
�
x(k)(n+ 1); tn+1

�
(146)
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where iterations are terminated when

jx(k+1)(n+ 1)� x(k)(n+ 1)j < " (147)

If we choose the initial guess x(0)(n+ 1) reasonably close to the solution, the convergence of

the iterations is accelerated. To achieve this, we choose x(0)(n + 1) as the value generated

by an explicit m�step algorithm and then apply the iterative formula. This is known as the
predictor-corrector method. For example, a two-step predictor-corrector algorithm can be

given as

Predictor: x(0)(n+ 1) = x(n) + h
�
3

2
f(n)� 1

2
f(n� 1)

�
(148)

Corrector: x(k+1)(n+ 1) = x(n) + h
�
1

2
f(x(k)(n+ 1); tn+1) +

1

2
f(n)

�
(149)

If the stepsize is selected properly, relatively few applications of the correction formula are

enough to determine x(n+ 1), with a high degree of accuracy.

Gear�s Predictor-Corrector Algorithms A popular algorithm used for numerical inte-

gration is Gear�s predictor corrector. The equations for this algorithm are as follows:

� Gear�s m-th order predictor algorithm is an explicit algorithm, with

p = m� 1 (150)

��1 = �1 = ::::::: = �p = 0; �0 6= 0 (151)

x(n+ 1) = �0x(n) + �1x(n� 1) + :::::::+ �px(n� p) + h�0f(n) (152)

� Gear�s m-th order corrector

p = m� 1 (153)

�0 = �1 = ::::::: = �p = 0; ��1 6= 0 (154)

x(n+ 1) = �0x(n) + �1x(n� 1) + :::::::+ �px(n� p) + h��1f(n+ 1) (155)

The Gear�s corrector formulae are also often referred to as dackward di¤erence formulae

(BDF). Coe¢ cients of the above algorithm can be computed by setting up appropriate

constraint equations as shown previously.
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6.1.3 Multivariate Case

Even though the above derivations have been worked for one dependent variable case, these

methods can be easily extended to multi-variable case

dx

dt
= F (x; t) ; x 2 Rn (156)

where F (x; t) is a n� 1 function vector. In the multivariable extension, the scalar function
f(x; t) is replaced by the function vector F (x; t), i.e.

x(n+ 1) = �0x(n) + �1x(n� 1) + :::::::+ �px(n� p)
+h
�
��1F (n+ 1) + �0F (n) + �1F (n� 1) + ::::+ �pF (n� p)

�
where

F (n� i) � F [x(tn � ih); (tn � ih)]
i = �1; 0; 1; :::p

and the scalar coe¢ cients
�
�0::::�p; ��1; �0; �1; ::::::�p

	
are identical with the coe¢ cients

derived for the scalar case as described in the above section.

The main advantage of multi-step methods is that there are no extraneous �inter-interval�

calculations as in the case of Runge-Kutta methods. These methods can be used for sti¤

equations if the integration interval is chosen carefully. However, since the time instances

should be uniformly spaced, selection of the integration interval is a critical issue.

6.2 Numerical Solution using Orthogonal Collocations

Other method based on polynomial interpolation is orthogonal collocations. Consider the

scalar ODE-IVP given by equations (91), which has to be integrated over interval [tn; tn+1 =

tn + h]: De�ning scaled time variable � as

� =
t� tn
h

the ODE-IVP can be transformed as follows

dx

d�
= hf(x; tn + h�) ; x(0) = x(n) (157)

It may be noted that x(1) now corresponds to x(tn+1). We illustrate here how this trans-

formed ODE-IVP can be solved using three internal collocation points between [0; 1]. As-

suming that we have 3 internal collocation points at roots of the 3�rd order shifted Legandre

polynomial, we de�ne �ve time points

� 1 = 0; � 2 = 0:1127; � 3 = 0:5; � 4 = 0:8873 and � 5 = 1
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Let us de�ne a vector x such that ith element of x corresponds to the value of x at � = � i

xi =x(� i)

Since the initial value is speci�ed, it follows that

x1 =x(0) = x(n) (158)

Now, using S matrix de�ned in Module on Problem Discretization using Approximation

Theory, we can set up the following algebraic constraints�
s(i)
�T
x =hf(xi; tn + h� i) (159)

for i = 2; 3; 4,5. Equations (158) and (159) can be combined and rearranged as follows26664
3:87 2:07 �1:29 0:68

�3:23 0 3:23 �1:5
1:29 �2:07 �3:87 5:32

�1:88 2:67 �14:79 13

37775
26664
x2

x3

x4

x5

37775 =
26664
hf(x2; tn + h� 2)

hf(x3; tn + h� 3)

hf(x4; tn + h� 4)

hf(x5; tn + h� 5)

37775�
26664
�5:32
1:5

�0:68
1

37775x(n)
The resulting set of nonlinear algebraic equations can be solved using any standard approach

such as Newton�s method or Leverberg-Marquardt method. The solution yields x(tn+1) =

x(� = 1) = x5 along with the values of x at intermediate time points. Generalization of

this approach to the case with more number of internal collocation points in interval [0,1] is

straightforward and not discussed separately.

To see how this method can be extended to deal with a vector di¤erential equation,

consider coupled system of ODE IVPs

dx

d�
= hf1(x; y; tn + h�) ; x(0) = x(n) (160)

dy

d�
= hf2(x; y; tn + h�) ; y(0) = y(n) (161)

De�ning a vectors x and y such that

xi =x(� i) and yi =y(� i)

we have to solve coupled set of equations�
s(i)
�T
x = hf(xi;yi; tn + h� i) (162)�

s(i)
�T
y = hf(xi;yi; tn + h� i) (163)
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for i = 2; 3; 4,5 simultaneously. The �nal rearranged set of coupled equations are as follows26664
3:87 2:07 �1:29 0:68

�3:23 0 3:23 �1:5
1:29 �2:07 �3:87 5:32

�1:88 2:67 �14:79 13

37775
26664
x2

x3

x4

x5

37775 =
26664
hf(x2;y2; tn + h� 2)

hf(x3;y3; tn + h� 3)

hf(x4;y4; tn + h� 4)

hf(x5;y5; tn + h� 5)

37775�
26664
�5:32
1:5

�0:68
1

37775x(n)
26664
3:87 2:07 �1:29 0:68

�3:23 0 3:23 �1:5
1:29 �2:07 �3:87 5:32

�1:88 2:67 �14:79 13

37775
26664
y2

y3

y4

y5

37775 =
26664
hf(x2;y2; tn + h� 2)

hf(x3;y3; tn + h� 3)

hf(x4;y4; tn + h� 4)

hf(x5;y5; tn + h� 5)

37775�
26664
�5:32
1:5

�0:68
1

37775 y(n)
De�ning vector

z =
h
x2 :: x5 y2 :: y5

iT
the above set of coupled nonlinear algebraic equations can be arranged in the standard form

Az = G(z)

and can be solved using a suitable iteration scheme.

7 Convergence Analysis and Selection of Integration

Interval

Selection of integration interval is a crucial parameter while solving ODE-IVPs numerically.

In this section, we provide some insights into this aspect. The methods developed in this

module are primarily meant for numerically solving nonlinear ODE-IVPs. However, for the

purpose of analysis, we apply them on linear ODE-IVPs. This is because the true solution

of linear ODE-IVPs can be found and thus can be used as a basis for carrying out the

convergence analysis.

7.1 Analysis of Linear ODE-IVPs

To see how choice of integration interval can a¤ect solution behavior, consider a scalar linear

ODE-IVP of the form
dx

dt
= ax; x(0) = x0 (164)

where a < 0. Analytical (true) solution of the above equation is given as

x�(t) = eatx0 (165)
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De�ning x�(tn) = x�(n), we can write true solution as a di¤erence equation as follows

x�(n) = eanhx0 (166)

x�(n+ 1) = ea(n+1)hx0 (167)

or

x�(n+ 1) = eahx�(n) (168)

Now consider the approximate solution of the above ODE-IVP by explicit Euler methods

x(n+ 1) = x(n) + hf(n)

= (1 + ah)x(n)

) x(n) = (1 + ah)nx0

(169)

De�ning approximation error introduced due to numerical integration,

e(n) = x�(n)� x(n) (170)

we can write

e(n+ 1) = (1 + ah)e(n) +
�
eah � (1 + ah)

�
x�(n) (171)

Thus, the combined equation becomes"
e(n+ 1)

x�(n+ 1)

#
=

"
(1 + ah)

�
eah � (1 + ah)

�
0 eah

#"
e(n)

x�(n)

#
(172)

Now, since a < 0; i.e. the ODE (164) is asymptotically stable. As a consequence, for the

di¤erence equation (168) we have eah < 1 and x�(n)! 0 as n!1, i.e. the solution of the
di¤erence equation is also asymptotically stable. Thus, we can expect that the approximate

solution fx(n)g should exhibit similar behavior qualitatively and e(n)! 0 as n!1: This
requires that the di¤erence equation given by (172) should be asymptotically stable, i.e., all

eigenvalues of matrix

B =

"
(1 + ah)

�
eah � (1 + ah)

�
0 eah

#
should have magnitude strictly less than one. The eigenvalues of matrix B can be computed

by solving the characteristic equation of B, i.e.

det(�I �B) = [�� (1 + ah)]
�
�� eah

�
= 0

Thus, the approximation error e(n)! 0 as n!1 provided the following condition holds

j�1j = j1 + ahj < 1 (173)

) �2 < ah < 0 (174)
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This inequality gives constraint on the choice of integration interval h, which will ensure that

approximation error will vanish asymptotically.

Following similar line of arguments, we can derive conditions for choosing integration

interval for di¤erent methods. For example,

� Implicit Euler"
e(n+ 1)

x�(n+ 1)

#
=

24 1

(1� ah)

�
eah � 1

(1� ah)

�
0 eah

35" e(n)

x�(n)

#
(175)

Convergence conditions can be stated as follows���� 1

1� ah

���� < 1 (176)

Since it is assumed that a < 0 and the step size h is always positive, the condition given

by equation (176) is satis�ed for any positive value of h. As a consequence, the implicit

Euler has much better convergence properties when compared with the explicit Euler

method.

� Trapeziodal Rule (Simpson�s method):"
e(n+ 1)

x�(n+ 1)

#
=

24 1 + (ah=2)

1� (ah=2)

�
eah � 1 + (ah=2)

1� (ah=2)

�
0 eah

35" e(n)

x�(n)

#
(177)

Convergence conditions can be stated as follows����1 + (ah=2)1� (ah=2)

���� < 1 (178)

Since it is assumed that a < 0 and the step size h is always positive, the condition

given by equation (178) is satis�ed for any positive value of h. As a consequence, the

Simpson�s method has much better convergence properties when compared with the

explicit Euler method.

� 2�nd Order Runge Kutta Method"
e(n+ 1)

x�(n+ 1)

#
=

24
�
1 + ah+

(ah)2

2

� �
eah �

�
1 + ah+

(ah)2

2

��
0 eah

35" e(n)

x�(n)

#
(179)

Convergence conditions can be stated as follows����1 + ah+ (ah)22
���� < 1) �2 < ah+ (ah)

2

2
< 0 (180)
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Thus, the choice of integration interval depends on the parameters of the equation to be

solved and the method used for solving ODE IVP. These simple example also shows that

the approximation error analysis gives considerable insight into relative merits of di¤erent

numerical methods for solving ODE-IVPs. For example, in the case of implicit Euler or

Simpson�s rule, the approximation error asymptotically reduces to zero for any choice of h

> 0. (Of course, larger the value of h, less accurate is the numerical solution.) This, however,

is not true for explicit Euler method or Runge-Kutta 2�nd order methods. This clearly shows

that implicit Euler method and Simpson�s rule are superior to explicit Euler method.

The above analysis can be easily extended to a coupled system of linear ODE-IVP of the

form
dx

dt
= Ax (181)

x(0) = x0 at t = 0 (182)

where x 2 Rn and A is a (n� n) matrix. Let us further assume that all eigenvalues of A
are in the left half of the complex plane i.e.

Re [�i(A)] < 1 for all i

The true solution is given as follows (see Appendix for details)

x�(t) = exp(At)x0

or in discrete settings

x�(n+ 1) = exp(Ah)x�(n)

When matrix A is diagonalizable, i.e. A = 	�	�1; we can write

exp(At) = 	 exp(�t)	�1

exp(�t) =

26664
�1 0 :: 0

0 �2 :: 0

0 :: ::: 0

0 :: 0 �n

37775
Since all eigenvalues of matrix A have -ve real part, it follows that

exp(�ih) = exp(�ih+ j�ih)

= exp(�ih) [cos(�ih) + j sin(�ih)]

jexp(�ih)j = exp(�ih) < 1 for all i

exp(�t) ! [0] as n!1

and kx�(n)k ! 0 as n ! 1:Then, following similar arguments as in the scalar case, it can
be shown that condition for choosing the integration interval are as follows
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� Explicit Euler: Approximate solution can governed by the following di¤erence equa-
tion

x(n+ 1) = [I+ hA]x(n)

and the dynamics of the approximation error, e(n) = x(n)� x�(n); is governed by the
folling matrix di¤erence equation"

e(n+ 1)

x�(n+ 1)

#
=

"
[I+hA] [exp(At)� I+hA]
0 exp(At)

#"
e(n)

x�(n)

#
(183)

� [I+ hA] < 1 (184)

where �(:) represents spectral radius of the matrix [I+ hA] : When matrix A is diag-

onalizable, we can write

I+ hA = 	 [I+ h�]	�1

and eigen values of matrix I+hA are (1+h�i) for i = 1; 2; :::; n where f�i : i = 1; 2; :::; ng
represent the eigenvalues of matrix A: Thus, the convergence condition can be stated

as

j1 + h�ij < 1 for i = 1; 2; :::; n

� Implicit Euler: Approximate solution can governed by the following di¤erence equa-
tion

x(n+ 1) = (I � hA)�1x(n) (185)

and the dynamics of the approximation error, e(n) = x(n)� x�(n); is governed by the
folling matrix di¤erence equation"

e(n+ 1)

x�(n+ 1)

#
=

"
(I � hA)�1 [exp(At)� (I � hA)�1]

0 exp(At)

#"
e(n)

x�(n)

#
(186)

In order that ke(n)k ! 0 as n!1; the following condition should hold

�
�
(I � hA)�1

�
< 1

When matrix A is diagonalizable, the convergence condition can be stated as���� 1

1� h�i

���� < 1 for i = 1; 2; :::; n
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� Trapeziodal Rule: Approximate solution can governed by the following di¤erence
equation

x(n+ 1) = [I � (h=2)A]�1 [I + (h=2)A]x(n) (187)

and the dynamics of the approximation error, e(n) = x(n)� x�(n); is governed by the
folling matrix di¤erence equation"

e(n+ 1)

x�(n+ 1)

#
= �

"
e(n)

x�(n)

#
(188)

� =

"
[I � (h=2)A]�1 [I + (h=2)A]

�
exp(At)� [I � (h=2)A]�1 [I + (h=2)A]

�
0 exp(At)

#
In order that ke(n)k ! 0 as n!1; the following condition should hold

�

"�
I � h

2
A

��1�
I +

h

2
A

�#
< 1 (189)

When matrix A is diagonalizable, the convergence condition can be stated as����1 + (�ih=2)1� (�ih=2)

���� < 1 for i = 1; 2; :::; n (190)

Similar error analysis (or stability analysis) can be performed for other integration meth-

ods. For example, consider the scenario when the 3-step algorithm is used for obtaining the

numerical solution of equation (164).

x(n+ 1) = ��1hf(n+ 1) + �0x(n) + �1x(n� 1) + �2x(n� 2)
= a��1hx(n+ 1) + �0x(n) + �1x(n� 1) + �2x(n� 2)

=
1

1� a��1h
[�0x(n) + �1x(n� 1) + �2x(n� 2)]

= �0x(n) + �1x(n� 1) + �2x(n� 2)

The above di¤erence equation can be rearranged in the following form.264 x(n� 1)x(n)

x(n+ 1)

375 =
264 0 1 0

0 0 1

�2 �1 �0

375
264 x(n� 2)x(n� 1)

x(n)

375 (191)

De�ning

z(n) =

264 x(n� 2)x(n� 1)
x(n)

375 ; z(n+ 1) =

264 x(n� 1)x(n)

x(n+ 1)

375 ; B =
264 0 1 0

0 0 1

�2 �1 �0

375 (192)
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we have

z(n+ 1) = Bz(n) (193)

x(n+ 1) = z3(n+ 1)

=
h
0 0 1

i
z(n+ 1) = Cz(n+ 1) (194)

Similarly, the true solution can be expressed as

z�(n+ 1) = B�z�(n) (195)

x�(n+ 1) = Cz�(n+ 1)

where

B� =

264 eah 0 0

0 eah 0

0 0 eah

375
The evolution of the approximation error is given as

e(n+ 1) = Be(n) + [B� �B] z�(n)
e(n) = z�(n)� z(n)

The stability criterion that can be used to choose integration interval h can be derived as

�(B) < 1 (196)

Note that characteristic equation for matrix B is given as

�3 � �0�2 � �1�� �2 = 0 (197)

Thus, eigenvales of matrix B can be directly computed using the coe¢ cients �0; �1 and �2;
which are functions of integration interval h:

Equations such as (184), (185), (190) and (197) can be used to generate stability en-

velopes for each method in the complex plane (eigenvalues of a matrix can be complex).

Stability envelopes for most of the methods are available in literature. The following general

conclusions can be reached by studying these plots [3].

� Even though the �rst and second order Adams-Moulton methods ( implicit Euler
and Crank-Nicholson) are Asymptotically-stable, the higher order techniques have re-

stricted regions of stability. These regions are larger than the Adams-Bashforth family

of the same order.
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� All forms of the R-K algorithms with order � 4 have identical stability envelopes.

� Explicit R-K techniques have better stability characteristics than explicit Euler.

� For predictor-corrector schemes, accuracy of scheme improves with order. However,
stability region shrinks with order.

7.2 Extension to Nonlinear ODE IVPs

The conclusions reached from studying linear systems can be extended to general nonlinear

systems locally using Taylor expansion.

dx

dt
= F(x) (198)

can be approximated as

dx

dt
�= F(x(n)) +

�
@F

@x

�
x=x(n)

(x� x(n)) (199)

�=
�
@F

@x

�
x=x(n)

x+

"
F [x(n)]�

�
@F

@x

�
x=x(n)

x(n)

#
(200)

�= (A)nx+ (d)n (201)

Applying some numerical technique to solve this problem will lead to a di¤erence equation

of the form

x(n+ 1) = (B)nx(n) + (c)n (202)

and stability will depend on the choice of h such that �[(B)n] < 1 for all n. Note that, it is

di¢ cult to perform global analysis for general nonlinear system.

7.3 Sti¤ness of ODEs [3]

The problem of integrating multi-variable ODE-IVP with some variables changing very fast

in time while others changing slowly, is di¢ cult to solve. This is because, the stepsize has

to be selected according to the fastest changing variable / mode. For example, consider the

equation
d

dt

"
y1

y2

#
=

"
�100 0

2 �1

#"
y1

y2

#

A =

"
�100 0

2 �1

#
; y(0) =

"
2

1

#
(203)

It can be shown that the solution for the above system of equations is
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"
y1(t)

y2(t)

#
=

"
2e�100t

103
99
e�t � 4

99
e�100t

#
(204)

It can be observed that the terms with e�100t lead to a sharp decrease in y1(t) and to a small

maximum in y2(t) at t = 0:0137. The term y2(t) is dominated by e�t which decreases slowly.

Thus,

y1(t) < 0:01y1(0) for t > 0:03 (205)

y2(t) < 0:01y1(t) for t > 4:65 (206)

Now, stepsize should be selected such that the faster dynamics can be captured. The sti¤ness

of a given ODE-IVP is determined by �nding the sti¤ness ratio de�ned as

S:R: =
jRe�i(A)jmax
jRe�i(A)jmin

(207)

where matrix A is de�ned above. Systems with �large�sti¤ness ratio are called as sti¤.

This analysis can be extended to a general nonlinear systems only locally. Using Taylor�s

theorem, we can write

dx

dt
= F (x) = F [x(n) + x(t)� x(n)] (208)

�= F (xn) +

�
@F

@x

�
x=x(n)

[x(t)� x(n)] (209)

Local sti¤ness ratio can be calculated using eigenvalues of the Jacobian and the ODE-IVP

is locally sti¤ if the local S.R. is high, i.e., the system has at least one eigenvalue which does

not contribute signi�cantly over most of the domain of interest. In general, eigenvalues of

the Jacobian are time dependent and S.R. is a function of time. Thus, for sti¤ systems it is

better to use variable step size methods or special algorithms for sti¤ systems.

7.4 Variable stepsize implementation with accuracy monitoring
[2]

One practical di¢ culty involved in the integration with �xed stepsize is the choice of stepsize

such that the approximation errors are kept small. If a system of nonlinear ODEs is sti¤

only in certain regions of the state space, then selecting a �xed step size is a non-trivial

task. In such a situation, a variable stepsize algorithm is implemented with error monitoring

as given in Table 2. It may be noted that above algorithm can be implemented with any

Runge-Kutta class methods.
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Table 2: Variable Size Implememtation of Runge-Kutta Algorithms
Given: tn;x(n) = x(tn); "

Step 1: Choose stepsize h1 and let t
(1)
n+1 = tn + h1

Step 2: Compute x(1)(n+ 1) using the chosen method (e.g. Euler / Runge-Kutta etc.).

Step 3: De�ne h2 = h1=2; t
(2)
n+1 = tn + h2

t
(2)
n+2 = tn + 2h2 (= t

(1)
n+1)

Compute x(2)n+1 and x
(2)
n+2 using the chosen method

Step 4:

IF (
x(1)(n+ 1) � x(2)(n+ 2)

 < ");

Accept x(1)(n+ 1) as the new value

Set x(n+ 1) = x(1)(n+ 1); and n = n + 1 and proceed to Step 1.

ELSE

Set h1 = h2 and proceed to the step 2.

END IF

8 Solutions of Di¤erential Algebraic System of Equa-

tions

Di¤erential algebraic equations (DAEs) is an important class of problems that arise in many

engineering applications. Such equations often appear while developing dynamic models

of systems, which involve multiple physical phenomenon each occurring at di¤erent time

scale. For example, while modeling a distillation column, the dynamics associated vapor

phase is signi�cantly faster than the dynamics associated with the liquid phase. Another

context where such equations arise is while solving ODE-BVPs or PDEs by discretization

using orthogonal collocations method.

A general DAE system can be expressed as follows

F

�
X;
dX

dt
; t

�
= 0 (210)

with X(0) = X0 and F [:] : Rn ! Rn represents a nonlinear function vector. DAEs that

cannot be represented by any further simpli�cation are referred to as fully implicit. The

DAEs that can be further simpli�ed are classi�ed as follows

� Linear implicit:
A
dX

dt
+ F [X; t] = 0 (211)

with X(0) = X0:
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� Semi-explicit:

dx

dt
= f [x; z; t] (212)

0 = g [x; z] (213)

where vector x represents di¤erential variables, vector z represents algebraic variables

and XT =
�
xT zT

�
:

Here, we only consider the semi-explicit DAEs. DAEs are solved using extensions of ODE

solvers. There are two approaches for solving DAEs numerically:

� Nested Approach: This is probably the most commonly used approach.

�Given x(n), solve for g [x(n); z(n)] = 0 and compute z(n)

�Using an ODE method, evolve x(n+ 1) = x(n+ 1)+

tn+1Z
tn

f [x(�); z(x(�)); � ] d�

This approach requires z = z(x) (implicit function) and used if only an explicit solver

is available (e.g., explicit Euler or Runge-Kutta). The approach can be can be computa-

tionally expensive due to inner iterative calculations involved in solving for g [x(�); z(�)] =

0 given x(�):

� Simultaneous Approach: Solves equations (212-213) simultaneously using an im-
plicit method, such as implicit Euler or BDF, to evolve both x(n+ 1) and z(n+ 1) in

time. This approach is much more e¢ cient and allows more �exible problem speci�ca-

tion. Consider a Gear�s corrector (or BDF) solver. For a semi-explicit system, we can

write

x(n+ 1) = h��1f [x(n+ 1); z(n+ 1);tn+1] + �0x(n) + �1x(n� 1) + :::::::+ �px(n� p)
0 = g [x(n+ 1); z(n+ 1)]

and the resulting system of nonlinear algebraic equations can be solved simultaneously

for computing x(n+ 1) and z(n+ 1) using, say, Newton�s method.

A detailed treatment of solution approaches for solving DAE systems can be found in

Ascher and Petzoldt [4].
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9 Solution of ODE-BVP using Shooting Method [3]

In this section, we present a technique for solving an ODE-BVP using numerical algorithms

for solving ODE-IVPs in combination with a technique for solving nonlinear algebraic equa-

tion. By this approach, the missing conditions at one end point of the independent variable

(say at z = 0) are guessed, which converts the ODE-BVP into an initial value problem.

We then integrate or shoot to the other boundary point (i.e. z = 1) and use the boundary

conditions at z = 1 as algebraic constraints on the dependent variables that must be satis�ed

by the solution. The guess of initial value that satis�es the boundary constraints yields the

solution to the ODE-BVP. The steps involved in single shooting method can be summarized

as follows:

� Step 1: Represent the ODE-BVP into a standard form

dx

dz
= F (x)

� Step 2: Assume the �missing�initial conditions at z = 0.

� Step 3: Integrate (shoot) the ODE-IVPs from z = 0 to z = 1 as if it is an ODE-IVP

using any standard numerical integration method for solving ODE-IVP

� Step 4: Check whether all the speci�ed boundary conditions are satis�ed at z = 1.

If the BC at z = 1 is satis�ed, terminate the iterations. Else, use method such as

Newton�s method / secant method / optimization to generate new guess values at

z = 0 and go to step 2.

We illustrate this idea using a speci�c examples.

Example 5 The ODE-BVP describing tubular reactor with axial mixing (TRAM) in which
an irreversible 2nd order reaction is carried out is given as

1

Pe

d2C

dz2
� dC
dz
�DaC2 = 0 (0 < z < 1) (214)

z = 0 :
dC

dz
= Pe(C � 1)

z = 1 :
dC

dz
= 0

where C is the dimensionless concentration, z is axial position, Pe is the Peclet number for

mass transfer and Da is the Damkohler number. Now, de�ning new state variables

x1 = C and x2 =
dC

dz
(215)
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we can transform the above ODE�s as

d

dz

"
x1

x2

#
=

"
x2

(Pe)x2 + (Da:Pe)x
2
1

#
� F(x) (216)

z = 0 : x2(0) = Pe [x1(0)� 1] (217)

z = 1 : x2(1) = 0 (218)

The single shooting method solves this problem by converting it into a sequence of ODE-IVP

problems as follows: Step 1: Guess x1(0) = �, which determines x2(0) = Pe(� � 1);Step 2:
Integrate the two ODE�s simultaneously using any standard ODE-IVP solver from z = 0 to

z = 1 and Step 3: Examine whether the given boundary condition, f(�) = x2(1) = 0; is

satis�ed, i.e. stop iterations if jx2(1)j < " else go to Step 1. De�ning

f(�) = x2(1) (219)

the value of � can be changed from iteration to iteration by the secant method as follows

�(k+1) = �(k) � f [�(k)]
�

�(k) � �(k�1)
f [�(k)]� f [�(k�1)]

�
(220)

Alternatively, we can use Newton�s method for generating search directions

�(k+1) = �(k) �
�

f [�(k)]

[df=d�]�=�(k)

�
(221)

The derivative [df=d�]�=�(k) can be computed by simultaneously integrating the sensitivity

equations. Given a set of the �rst order nonlinear equations

dx

dz
= F (x) ; x(0) = x0 ; x 2 Rn (222)

and F (x) is a n� 1 vector, the associated sensitivity equations are de�ned as
d�(z)

dz
=

�
@F

@x

�
�(z) ; �(0) = I (223)

where

�(z) =

�
@x(z)

@x0

�
represents the n � n sensitivity of solution vector x(z) with respect to the initial conditions
and I denotes identity matrix. In the present case, the sensitivity equations are

d�

dz
=

"
0 1

2DaPex1 Pe

#
�(z) (224)

�(z) =

2664
@x1(z)

@x1(0)

@x1(z)

@x2(0)
@x2(z)

@x1(0)

@x2(z)

@x2(0)

3775
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These equations have to be integrated from z = 0 to z = 1 to evaluate

[df=d�]�=�(k) = �21(1) =
@x2(1)

@x1(0)

Another possibility is to formulate an optimization problem as follows

min

�
[x2(1)]

2

Subject to
dx

dz
= F (x) for z 2 (0; 1]

x(0) =

"
�

Pe(�� 1)

#
This optimization problem can be solved using any standard approach, such as conjugate

gradient method. Given a guess �(k), each optimization iteration requires an ODE-IVP

solver to compute x2(1).

Example 6 Consider the problem of axial conduction and di¤usion in a tubular reactor

1

2

d2C

dz2
� dC
dz
� kC exp(� � �

T
) = 0

1

2

d2T

dz2
� dT
dz
� �kC exp(� � �

T
) = 0

de�ned over 0 < z < 1 together with boundary conditions

At z = 0 :
1

2

dC

dz
= C � 1 and

1

2

dT

dz
= T � 1

At z = 1 :
dC

dz
=
dT

dz
= 0

Here k,� and � are known constants. It is desired to solve this coupled set of ODE-BVP

using single shooting method. De�ning new state variables

x1 = C; x2 =
dC

dz
; x3 = T; x4 =

dT

dz
(225)

the coupled ODEs can be transformed as follows

d

dz

26664
x1

x2

x3

x4

37775 =
2666664

x2

2x2 + 2kx1 exp(� �
�

x2
)

x4

2x4 + 2k�x1 exp(� �
�

x2
)

3777775 � F(x)
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z = 0 : x2(0) = 2 [x1(0)� 1] (226)

z = 0 : x4(0) = 2 [x3(0)� 1] (227)

z = 1 : x2(1) = 0 (228)

z = 1 : x4(1) = 0 (229)

If we guess x1(0) = � and x3(0) = �; then the initial condition becomes

x(0) =
h
� 2 [�� 1] � 2 [� � 1]

iT
We can formulate an optimization problem as follows

min

�; �
!1 [x2(1)]

2 + !2 [x4(1)]
2

Subject to
dx

dz
= F(x) for z 2 (0; 1]

x(0) =
h
� 2 [�� 1] � 2 [� � 1]

iT
where !1,!2 > 0 are suitable weights. The resulting optimization problem can be solved

using any standard approach, such as conjugate gradient method or quasi-Newton method,

in combination with a suitable ODE-IVP solver.

10 Summary

In these lecture notes, we have studied numerical methods for solving ODE-IVPs. In partic-

ular, we have discussed development of numerical algorithms based on

� Taylor series approximations (Runge-Kutta methods)

� Polynomial interpolation based algorithms (Predictor-corrector type methods and Or-
thogonal Collocation).

In the end, we provide a brief introduction to the stability analysis of the numerical

algorithms for solving ODE-IVPs.

11 Exercise

1. Express the following set of equations in the standard form

dx=dt = Ax with Initial Condition x(0)
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(a) Set 1

d2y=dt2 + 4dy=dt+ 3y = 0; y(0) = 1; dy=dt = 0 at t = 0

(b) Set 2

d3y=dt3 + 6d2y=dt2 + 11dy=dt+ 6y = 0

y(0) = 1; dy=dt = d2y=dt2 = 0 at t = 0;

(c) Set 3

dy=dt+ 3y + z = 0; y(0) = 1

d2z=dt2 + 3dz=dt+ 2z = 0

z(0) = 1; dz=dt = 0

Based on the eigenvalues ofA, �nd conditions on the choice of integration interval

if it is desired to use (i) Crank-Nicholson method (trapezoidal rule) (ii) explicit

Euler .

2. Consider the PDE given below

@C=@t = @2C=@z2

C(0; t) = C(1; t) = 0 for all 0 � t � 1

C(z; 0) = 1 for 0 � z � 1

(a) Use the �nite di¤erence technique on the dimensionless di¤usion equation obtain

a set of ODE-IVPs assuming N internal grid points. Particularly for the case

N = 2, Based on the eigenvalues of A, �nd conditions on the choice of integration

interval if it is desired to use (i) implicit euler and (ii) explicit Euler method.

(b) Repeat the above exercise using orthogonal collocation to discretize in space with

two internal collocation points.

(c) Based on the eigenvalues ofA, �nd conditions on the choice of integration interval

if it is desired to use (i) Crank-Nicholson method (trapezoidal rule) (ii) Runge

Kutta 2�nd order method.

3. Consider Van der Pol equation given below

d2y=dt2 � (1� y2)dy=dt+ 3y = 0

y(0) = 2; dy=dt = 0 at t = 0
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(a) Express the above ODE-IVP in standard form

dx=dt = F (x); x = x(0) at t = 0

(b) Using Taylor series approximation, linearize the resulting equation in the neigh-

borhood of x = [ 0 0 ]T and obtain the perturbation ODE-IVP of the form

d(�x)=dt = A�x

A =

�
@F

@x

�
(0;0)

where �x(t) = x(t)�x:

(c) Based on the decomposition of A = 	�	�1 using eigen values and eigen vectors

of matrix A, �nd true solution to the linearized ODE-IVP in the following form

�x(t)=
�
	 exp(�t)	�1� �x(0)

(d) Based on the eigenvalues ofA, �nd conditions on the choice of integration interval

if it is desired to use (i) Crank-Nicholson method (trapezoidal rule) (ii) Runge

Kutta 2�nd order method.

4. The steady state behavior of an isothermal tubular reactor with axial mixing, in which

a �rst order irreversible reaction is carried out, is represented by following ODE-BVP

d2C

dz2
� dC
dz
� 6C = 0

At z = 0 :
dC

dz
= C(0)� 1 ; At z = 1 : dC

dz
= 0

Represent the above second order equation in the standard form dx=dz = Ax by

appropriately de�ning a state vector x: Compute exp(Az) =	exp(�z)	�1 using eigen

values and eigen vectors of matrix A:Find the missing initial condition at z = 0 such

that the analytical solution

x(z) = exp(Az)x(0)

satis�es the boundary condition at z = 1.

5. It is desired to develop an implicit multi-step method for the following scalar ODE-IVP

dx

dt
= f(x; t) ; x(tn) = x(n)

for inegrating over the interval [tn; tn+1] using an interpolation polynomial of the form

x(t) = a0;n + a1;nt+ a2;nt
2 + a3;nt

3
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Here, tn+1 = tn + h and h represents �xed integration step size. Find the interpola-

tion polynomial coe¢ cients in terms of x(n); x(n � 1); f(n) and f(n + 1) and derive
expression for x(n+ 1):

6. It is desired to solve the following scalar ODE-IVP

dx

dt
= f(x; t) ; x(tn) = x(n) (230)

using Milne�s multi-step algorithm. The Milne�s implicit formulae for solving ODE-

IVPs are obtained by imposing following additional constraints

�0 = �2 = �3 = ::: = �p = 0 and �1 6= 0

along with the exactness constraints and selecting p = m� 2. Find the coe¢ cients of
the 3�rd order Milne�s implicit algorithm (i.e. m = 3; p = 1) and state the �nal form

of the integration algorithm.

7. It is desired to derive 3�rd order Gear�s implicit integration formula of the form

x(n+ 1) = �0x(n) + �1x(n� 1) + �2x(n� 2) + h��1f(n+ 1)

for numerically integrating an ODE-IVP of the form

dx=dt = f(x; t) ; I:c: : x(tn) = x(n) (231)

from t = tn to t = tn + 1. Setup the necessary constraint equations and obtain

coe¢ cients f�ig and ��1.

8. Consider the following set of di¤erential algebraic equations (DAE)

dx

dt
= az + bx2

z3 + (c+ x)z2 + (dx� e) + f = 0

The initial values x(n) and z(n) at t = tn are known and we wish to integrate the equa-

tion to obtain x(n+1) and z(n+1) at tn+1 = tn+h, where h represents the integration

interval, using the orthogonal collocation method with two internal collocation points

lying between [tn; tn+1]. Transform the DAE in terms of an independent variable �

such that � = 0 corresponds to t = tn and � = 1 corresponds to t = tn+1 = tn + h: For

the choice of internal collocation points at � = 0:2 and � = 0:8, write down the appro-

priate nonlinear algebraic equations that need to be solved simultaneously. What is
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the degree of freedom (i.e. number of unknowns - number of equations) of the resulting

set of nonlinear algebraic equations?

S =

26664
�7 8:2 �2:2 1

�2:7 1:7 1:7 �0:7
0:7 �1:7 �1:7 2:7

�1 2:2 �8:2 7

37775 ; T =

26664
24 �37:2 25:2 �12
16:4 �24 12 �4:4
�4:4 12 �24 16:4

�12 25:2 �37:2 24

37775
9. It is desired to apply the method of �nite di¤erence to solve the following PDE

@C

@t
=
@2C

@t2

Boundary Conditions : C(0; t) = C(1; t) = 0

Initial Condition : C(z; 0) = 1

where t and z represent dimensionless time and dimensionless length, respectively.

Assuming �n�equidistant grid points and de�ning vector

x =
h
C1 C2 ::: Cn

iT
we obtain the following set of ODE-IVP from the PDE

dx=dt = Ax ; x(0) =
h
1 1 ::: 1

iT

A =
1

(�z)2

26666664
�2 1 0 :::: 0

1 �2 1 :::: 0

:::: :::: :::: :::: ::::

0 :::: 1 �2 1

0 :::: 0 1 �2

37777775
(a) Suppose that it is desired to solve the resulting linear algebraic equations analyt-

ically as x(t) = [	 exp(�t)	�1]x(0) where A = 	�	�1: Show that vector

v(k) =
h
sin(k��z) sin(2k��z) ::::: sin(nk��z)

iT
is an eigenvector of matrix A with eigenvalue

�k =
2

(�z)2
[cos(k��z)� 1]

where and k = 1; 2; :::n and �z = 1=(n+1): (Show calculations for 1st; ithand the

last row).
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(b) Suppose, instead of solving the problem analytically, the set of ODE-IVP is to

be integrated using Crank-Nicholson method (i.e. trapezoidal rule). Find the

condition on the integration step size �h�in terms of eigenvalues of matrix A so

that the approximation error will decay exponentially and approximate solution

will approach the true solution.

Note: Crank-Nicholson algorithm for the scalar case can be stated as

x(n+ 1) = x(n) +
h

2
[f(n) + f(n+ 1)]

10. A chemical reactor is modelled using the following set of ODE-IVP

dC

dt
=

1� C
V

� 2C2 (232)

dV

dt
= 1� V (233)

Linearize the above equations in the neighborhood of steady state C = 0:5 and V =

1 and develop a linear perturbation model. Obtain the analytical solution for the

linearized system starting from initial condition C = 0:7 and V = 0:8: Also, compute

sti¤ness ratio and comment upon asymptotic stability of the solution.

11. It is desired to integrate the following ODE-IVP using the explicit Euler method

dx

dt
= Ax

A =

264 �6 �11 �6
1 0 0

0 1 0

375
x(0) =

h
1 1 1

iT
Find the condition on the choice of integration step size h such that the approximation

errors will asymptotically decay to zero.

(a) Additional Information: � = �1 and � = �2 are eigenvalues of A:
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