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In the �rst module, we have listed and categorized di¤erent types of equations that arise

in variety of engineering problems. The fundamentals of vector spaces were introduced in

the subsequent module. With this background, we are ready to start our journey in the

numerical analysis. We �rst show that the concept of vector space allows us to develop a

uni�ed representation of seemingly di¤erent problems, which were initially categorized as

algebraic equations, ODE-IVPs, ODE-BVP, PDEs etc., as a transformation of a vector from

one vector space to another. When the transformations involved in a problem at hand are

non-linear, it is often not possible to solve the problem analytically. In all such cases, the

problem is approximated and transformed to a computationally tractable form, i.e.,"
Original

Problem

#
Approximation

!
"
Computationally Tractable

Approximation

#

and we compute an approximate solution using the computable version. Figure 1 presents a

schematic representation of how a numerical solution scheme is formulated for a problem at

hand. It may be noted that the problem is transformed to one of the standard computable

forms and then one or more stadard tools are used to construct approximate solution of the

original problem. In some way, a numerical solution scheme can be considered analogous to

a measuring instrument, which generates a reasonable approximation of a measured physical

variable in a transformed domain. The measurements are acceptable as long as the errors in

approximation are small. In this module, we explain the process of problem approximation

using various approaches available in the literature. In the end, we distill out generic equation

forms that frequently arise in the process of the problem approximation.

1 Uni�ed Problem Representation

Using the generalized concepts of vectors and vector spaces discussed in the previous module,

we can look at mathematical models in engineering as transformations, which map a subset

of vectors from one vector space to a subset in another space.

De�nition 1 (Transformation):Let X and Y be linear spaces and let M be subset of

X. A rule which associates with every element x 2 M to an element y 2 Y is said to be

transformation from X to Y with domainM . If y corresponds to x under the transformation

we write y = T (x) where T (:) is called an operator.

The set of all elements for which an operator T is de�ned is called as domain of T and

the set of all elements generated by transforming elements in the domain by T are called as
range of T . If for every y 2 Y , there is utmost one x 2 M for which T (x) = y , then T (:)
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Figure 1: Formulation of Numerical Solution Scheme

is said to be one to one. If for every y 2 Y there is at least one x 2 M; then T is said to

map M onto Y: A transformation is said to be invertible if it is one to one and onto.

De�nition 2 (Linear Transformations): A transformation T mapping a vector space

X into a vector space Y is said to be linear if for every x(1);x(2) 2 X and all scalars �; �

we have

T (�x(1) + �x(2)) = �T (x(1)) + �T (x(2)): (1)

Note that any transformation that does not satisfy the above de�nition is not a linear

transformation.

De�nition 3 (Continuous Transformation): A transformation T : M ! Y is con-

tinuous at point x� 2 M if and only if
�
x(n)

	
! x� implies T (x(n)) ! T (x�) : If T (:) is

continuous at each x� 2M; then we say that the function is a continuous function on M .

Example 4 Operators

1. Consider transformation

y = Ax (2)

where y 2 Rm,x 2 Rn; A 2 Rm �Rn and T (x) =Ax. Whether this mapping is onto
Rm depends on the rank of the matrix. It is easy to check that A is a linear operator.
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2. Consider transformation

y = Ax+ b (3)

where y;b 2 Rm,x 2 Rn; A 2 Rm �Rn and T (x) =Ax+ b. Here, b is a �xed non-
zero vector. Note that this transformation does not satisfy equation (1) and does not

qualify as a linear transformation.

3. Consider transformation involving di¤erentiation, i.e.

y(t)=
dx(t)

dt

where t 2 [a; b] : Here, T () =d=dt is an operator from, X � C(1)[a; b]; the space of

continuously di¤erentiable functions, to the space of continuous function, i.e. Y �
C[a; b]. It is easy to check that this is a linear operator.

4. Consider transformation de�ned by de�nite integration operator, i.e.

�=

Z b

a

x(�)d� � T [x(�)]

which maps X � {space of integrable functions over [a; b]} into Y � R:

5. Consider ODE-IVP

dx=dt = f [t; x(t)] ; t 2 [0;1) (4)

with initial condition x(0) = �: De�ning product space Y = C(1)[a;1)�R; the trans-
formation T : C(1)[0;1)! Y can be stated as

T [x(t)] � [dx=dt� f (t; x(t)) ; x(0)]

and the ODE-IVP can be represented as

T [x(t)] = (0(t); �)

where 0 represents zero function over interval [0;1); i:e:0(t) = 0 for t 2 [0;1):

6. Consider ODE-BVP

a
d2u

dz2
+ b

du

dz
+ cg(u) = 0 (0 � z � 1)

B:C: at z = 0 : f1

�
du(0)

dz
; u(0)

�
= �0

B:C: at z = 1 : f2

�
du(1)

dz
; u(1)

�
= �1
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In this case, the transformation T [u(z)] de�ned as

T [u(z)] =
�
a
d2u(z)

dz2
+ b

du(z)

dz
+ cg (u(z)) ; f1 (u

0(0); u(0)) ; f2 (u
0(1); u(1))

�
maps space X � C (2)[0; 1] to Y = C(2)[0; 1] � R � R and the ODE-BVP can be

represented as follows

T [u(z)] = (0(z); �0; �1)

7. Consider general PDE

a
@2u

@z2
+ b

@u

@z
+ cg(u)� @u

@t
= 0

de�ned over (0 < z < 1) and t � 0 with the initial and the boundary conditions speci�ed
as follows

u(z; 0) = h(z) for (0 < z < 1)

B:C: at z = 0 : f1

�
du(0; t)

dz
; u(0; t)

�
= �0 for t � 0

B:C: at z = 1 : f2

�
du(1; t)

dz
; u(1)

�
= �1 for t � 0

In this case, the transformation T [u(z; t)] de�ned as

T [u(z; t)] = a
@2u(z; t)

@z2
+ b

@u(z; t)

@z

+cg (u(z; t))� @u
@t
; u(z; 0); f1 (u

0(0; t); u(0; t)) ; f2 (u
0(1; t); u(1; t))

maps space X � C (2)[0; 1] �C(1)[0;1) to Y = C(2)[0; 1]�C[a; b]�R�R and the PDE
can be represented as follows

T [u(z; t)] = (0(z; t); h(z); �0; �1)

A large number of problems arising in applied mathematics can be stated as follows [4]:

Solve equation y = T (x) (5)

where x 2 M � X;y 2 Y

Here, X and Y are vector spaces and operator T : M ! Y: In engineering parlance, x;y

and T represent input, output and model, respectively. Linz [4] proposes following broad

classi�cation of problems encountered in computational mathematics
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� Direct Problems: Given operator T and x; �nd y:In this case, we are trying to

compute output of a given system given input. The computation of de�nite integrals

is an example of this type.

� Inverse Problems:Given operator T and y; �nd x: In this case we are looking for

input which generates the observed output. Solving system of simultaneous (linear /

nonlinear) algebraic equations, ordinary and partial di¤erential equations and integral

equations are examples of this category

� Identi�cation problems:Given operator x and y; �nd T : In this case, we try to �nd
the laws governing systems from the knowledge of relation between the inputs and

outputs.

The direct problems can be treated relatively easily. The inverse problems and the

identi�cation problems are more di¢ cult to solve and form the central theme of this numerical

analysis course. When the operator involved is nonlinear, it is di¢ cult to solve the problem

(5) analytically. The problem is approximated and transformed to a computable form

[y=T (x)] Discretization!
hey=bT (ex)i (6)

where ex 2 Xn; ey 2 Yn are �nite dimensional spaces and bT (:) is an approximation of the
original operator T (:):This process is called as discretization. The main strategy used for
discretization is approximation of continuous functions using �nite order polynomials. In the

sections that follow, we discuss the theoretical basis for this choice and di¤erent commonly

used polynomial based approaches for problem discretization.

2 Polynomial Approximation[3]

Given an arbitrary continuous function over an interval, can we approximate it with another

�simple� function with arbitrary degree of accuracy? This question assumes signi�cant

importance while developing many numerical methods. In fact, this question can be posed

in any general vector space. We often use such simple approximations while performing
computations. The classic examples of such approximations are use of a rational number to

approximate an irrational number (e.g. 22=7 is used in place of � or �nite series expansion

of number e) or polynomial approximation of a continuous function. This section discusses

rationale behind such approximations.

De�nition 5 (Dense Set) A set D is said to be dense in a normed space X; if for each

element x 2X and every " > 0; there exists an element d 2D such that kx� dk < ":
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Thus, if set D is dense in X, then there are points of D arbitrary close to any element

of X: Given any x 2X , a sequence can be constructed in D which converges to x: Classic

example of such a dense set is the set of rational numbers in the real line: Another dense

set, which is widely used for approximations, is the set of polynomials. This set is dense

in C[a; b] and any continuous function f(t) 2 C[a; b] can be approximated by a polynomial
function p(t) with an arbitrary degree of accuracy as evident from the following result. This

classical result is stated here without giving proof.

Theorem 6 (Weierstrass Approximation Theorem): Consider space C[a; b], the set
of all continuous functions over interval [a; b], together with 1�norm de�ned on it as

kf(t)k1 =
max

t 2 [a; b]
jf(t)j (7)

Given any " > 0; for every f(t) 2 C[a; b] there exists a polynomial pn(t) such that kf(t)� pn(t)k <
":

This fundamental result forms the basis of the problem discretization in majority of the

cases. It may be noted that this is only an existence theorem and does not provide any

method of constructing a polynomial approximation. The following three approaches are

mainly used for constructing approximating polynomials:

� Taylor series expansion

� Polynomial interpolation

� Least square approximation

These approaches and their applications to problem discretization will be discussed in

detail in the sections that follow.

3 Discretization using Taylor Series Approximation

3.1 Local approximation by Taylor series expansion [14, 9]

To begin with let us consider Taylor series expansion for a real valued scalar function. Given

any scalar function f(x) : R ! R; which is continuously di¤erentiable n + 1 times at

x = x, the Taylor series expansion of this function attempts to construct a local polynomial

approximation of the form

pn(x) = �0 + �1 (x� x) + :::::+ �n (x� x)n (8)
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of f(x) in the neighborhood of a point, say x = x; such that

dkpn(x)

dxk
=
dkf(x)

dxk
(9)

for k = 0,1,2,...n. For k = 0, we have

pn(x) = �0 = f(x)

Similarly, for k = 1, the derivative condition (9) reduces to

dpn(x)

dx
=

�
�1 + 2�2 (x� x) + :::::+ n�n (x� x)n�1

�
x=x

) �1 =
df(x)

dx

and, in general for the k�th derivative, we have

dkpn(x)

dxk
=

h
(k!)�k + ((k + 1)k:::2)�k+1 (x� x) + :::::+ (n(n� 1):::(n� k))�n (x� x)n�k

i
x=x

) �k =
1

k!

dkf(x)

dxk
(10)

Thus, the local polynomial approximation pn(x) can be expressed as

pn(x) = f(x) +

�
df(x)

dx

�
�x+

1

2!

�
d2f(x)

dx2

�
(�x)2 + ::::+

1

n!

�
dnf(x)

dxn

�
: (�x)n (11)

where �x = x� x: The residual or the approximation error, rn(x; �x); is de�ned as follows

rn(x; �x) = f(x)� pn(x) (12)

plays an important role in analysis. The Taylor theorem gives the following analytical

expression for the residual term

rn(x; �x) =
1

(n+ 1)!

dn+1f(x+ ��x)

dxn+1
(�x)n+1 where (0 < � < 1) (13)

which is derived by application of the mean value theorem and the Rolle�s theorem on interval

[x; x] [14]. Thus, given a scalar function f(x) : R ! R; which is continuously di¤erentiable

n+1 times at x = x, the Taylor series expansion of this function can be expressed as follows

f(x) = f(x) +

�
df(x)

dx

�
�x+

1

2!

�
d2f(x)

dx2

�
(�x)2 + ::::+

1

n!

�
dnf(x)

dxn

�
: (�x)n + rn(x; �x) (14)

While developing numerical methods, we require a more general, multi-dimensional ver-

sion of the Taylor series expansion. Given function F(x) : Rn ! Rm; which is continuously
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di¤erentiable n + 1 times at x = x, the Taylor series expansion of this function in the

neighborhood the point x = x can be expressed as follows

F(x) = Pn(x) +Rn(x; �x) (15)

Pn(x) = F(x)+

�
@F(x)

@x

�
�x+

1

2!

�
@2F(x)

@x2

�
(�x;�x)+ ::::+

1

n!

�
@nF(x)

@xn

�
(�x;�x; :::;�x) (16)

where �x = x� x and the residual Rn(x; �x) is de�ned as follows

Rn(x; �x) =
1

(n+ 1)!

@n+1F(x+ ��x)

@xn+1
(�x;�x; :::;�x) where (0 < � < 1) (17)

Here, the F(x) 2 Rm; Jacobian
h
@F(x)
@x

i
is a matrix of dimension (m � n),

h
@2F(x)
@x2

i
is a

(m � n � n) dimensional array and so on. In general,
h
@rF(x)
@xr

i
is an (m � n � n::: � n)

dimensional array such that when the vector �x operates on it n times, the result is an

m�1 vector. It may be noted that the multi-dimensional polynomial given by equation (16)
satis�es the condition

dkPn(x)

dxk
=
dkF(x)

dxk
(18)

for i = 1,2,...n. The following two multidimensional cases are used very frequently in the

numerical analysis.

� Case A: Scalar Function f(x) : Rn ! R

f(x) = f(x) + [rf(x)]T �x+ 1

2!
�xT

�
r2f(x)

�
�x+R3(x; �x)

rf(x) =
�
@f(x)

@x

�
=

�
@f

@x1

@f

@x2
::::::

@f

@xn

�T
x=x

r2f(x) =

�
@2f(x)

@x2

�
=

2666666664

@2f

@x21

@2f

@x1@x2
::::::

@2f

@x1@xn
@2f

@x2@x1

@2f

@x22
::::::

@2f

@x2@xn
:::::: :::::: :::::: ::::::
@2f

@xn@x1

@2f

@xn@x2
::::::

@2f

@x2n

3777777775
x=x

R3(x; �x) =
1

3!

nX
i=1

nX
j=1

nX
k=1

@3f(x+ ��x)

@xi@xj@xk
�xi�xj�xk ; (0 < � < 1)

Here, rf(x);referred to as gradient, is an n�1 vector and, [r2f(x)]; known as Hessian,

is an n� n matrix. It may be noted that the Hessian is always a symmetric matrix.
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Example 7 Consider the function vector f(x) : R2 ! R

f(x) = x21 + x
2
2 + e

(x1+x2)

which can be approximated in the neighborhood of x =
h
1 1

iT
using the Taylor series

expansion as

f(x) = f(x) +

�
@f1
@x1

@f1
@x2

�
x=x

�x+
1

2
[�x]T

2664
@2f

@x21

@2f

@x1@x2
@2f

@x2@x1

@2f

@x22

3775
x=x

�x+R3(x; �x)(19)

= (2 + e2) +
h
(2 + e2) (2 + e2)

i " x1 � 1
x2 � 1

#

+
1

2

"
x1 � 1
x2 � 1

#T "
(2 + e2) e2

e2 (2 + e2)

#"
x1 � 1
x2 � 1

#
+R3(x; �x) (20)

� Case B: Function vectorF (x) : Rn ! Rn

F (x) = F (x) +

�
@F (x)

@x

�
�x+R2(x; �x) (21)

�
@F (x)

@x

�
=

266666664

@f1
@x1

@f1
@x2

::::::
@f1
@xn

@f2
@x1

@f2
@x2

::::::
@f2
@xn

:::::: :::::: :::::: ::::::
@fn
@x1

@fn
@x2

::::::
@fn
@xn

377777775
x=x

Here,
�
@F (x)

@x

�
; referred to as Jacobian matrix is an n� n matrix.

Example 8 Consider the function vector F (x) 2 R2

F (x) =

"
f1(x)

f2(x)

#
=

"
x21 + x

2
2 + 2x1x2

x1x2e
(x1+x2)

#

which can be approximated in the neighborhood of x =
h
1 1

iT
using the Taylor series

expansion as follows

F (x) =

"
f1(x)

f2(x)

#
+

264 @f1
@x1

@f1
@x2

@f2
@x1

@f2
@x2

375
x=x

�x+R2(x; �x)

=

"
4

e2

#
+

"
4 4

2e2 2e2

#"
x1 � 1
x2 � 1

#
+R2(x; �x)
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3.2 Discretization using Finite Di¤erence Method [2]

To begin with we present an application of scalar Taylor series expansion to discretization

of ODE-BVP and PDEs. Even when the domain of the function under consideration is

multivariate, the Taylor series approximation is applied locally by considering one variable

at a time.

3.2.1 Local Approximation of Derivatives using Taylor Series Expansion

Let function u(z) denote an n-times di¤erentiable function where the independent z 2 [a; b]:
Consider the problem of developing a local approximation of derivatives of u(z) at a point,

say z = z; in (a; b): Let �z > 0 represent a small perturbation from z = z such that

[z ��z; z +�z] 2 [a; b]: If �z is su¢ ciently small, then, using the Taylor Series expansion,
we can write

u(z +�z) = u(z) +

�
du(z)

dz

�
(�z) +

1

2!

d2u(z)

dz2
(�z)2 +

1

3!

d3uu(z)

dz3
(�z)3 + r4(z;�z) (22)

Similarly, using the Taylor series expansion , we can express u(z ��z) as follows

u(z ��z) = u(z)� du(z)
dz

(�zi) +
1

2!

d2u(z)

dz2
(�z)2 � 1

3!

d3u(z)

dz3
(�z)3 + er4(z;�z) (23)

From equations (22) and (23) we can arrive at several approximate expressions for
�
du

dz

�
at

z = z. Rearranging equation (22) we obtain

du(z)

dz
=
[u(z +�z)� u(z)]

�z
�
�
d2u(z)

dz2

�
�z

2

�
+ :::

�
(24)

and, when �z is su¢ ciently small, then neglecting the higher order terms we obtain forward

di¤erence approximation of the local �rst order derivative as follows

du(z)

dz
' u(z +�z)� u(z)

�z

Similarly, starting from equation (23), we can arrive at backward di¤erence approximation

of the local �rst order derivative, i.e.

du(z)

dz
' u(z)� u(z ��z)

�z

It may be noted that the errors in the forward and the backward di¤erence approximation

are of the order of �z, which is denoted as O(�z): Alternatively, subtracting equation (23)

from (22) and rearranging we can arrive at the following expression

du(z)

dz
=
[u(z +�z)� u(z ��z)]

2(�z)
�
�
u
(3)
i (
�z2

3!
) + :::

�
(25)
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and, for su¢ ciently small �z, we obtain central di¤erence approximation of the local �rst

order derivative by neglecting the terms of order higher than �z2 , i.e.

du(z)

dz
' [u(z +�z)� u(z ��z)]

2(�z)
(26)

The central di¤erence approximation is accurate to O[(�z)2] and is more commonly used.

To arrive at an approximation for the second order derivatives at z = z, adding equation

(23) with (22) and rearranging, we have

d2u(z)

dz2
=
[u(z +�z)� 2u(z) + u(z ��z)]

(�z)2
�
�
2
d4u(z)

dz4
(�z)2

4!
+ :::

�
(27)

When �z is su¢ ciently small, we obtain the following approximation for the second deriva-

tive
d2u(z)

dz2
' u(z +�z)� 2u(z) + u(z ��z)

(�z)2
(28)

Note that errors in the approximations (26) and (28) are of order O[�z)2]. This process can

be continued to arrive at approximations of higher order derivatives at z = z:

The approach developed for function of one independent variables can easily be extended

to arrive at local approximations to partial derivatives of a continuously di¤erential function

in multiple variables. For example, Let function u(x; y) denote an n-times di¤erentiable

function where the independent x 2 (a; b) and z 2 (c; d): Consider the problem of developing
a local approximation of partial derivatives of u(x; y) at a point, say x = x 2 (a; b) and
y = y 2 (c; d): Let �x > 0;�y > 0 represent a small perturbations from x = x; y = y such

that [x��x; x+�x] 2 [a; b] and [y��y; y+�y] 2 [c; d]: Then, using similar argumemnts, we
can arrive at the following approximations of the �rst and the second order partial derivatives

du(x; y)

dx
' [u(x+�x; y)� u(x��x; y)]

2(�x)
(29)

du(x; y)

dy
' [u(x; y +�y)� u(x; y ��y)]

2(�y)
(30)

d2(x; y)

dx2
' u(x+�x; y)� 2u(x+�x; y) + u(x��x; y)

(�x)2
(31)

and so on.

3.2.2 Discretization of ODE-BVPs

Consider the following general form of 2ndorder ODE-BVP problem frequently encountered

in engineering problems

	

�
d2u

dz2
;
du

dz
; u; z

�
= 0 for z 2 (0; 1) (32)
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B:C: 1 (at z = 0) : f1

�
du

dz
; u; 0

�
= 0 (33)

B:C: 2 (at z = 1) : f2

�
du

dz
; u; 1

�
= 0 (34a)

Let u�(z) 2 C(2)[0; 1] denote the exact / true solution to the above ODE-BVP. Depending
on the nature of operator 	;it may or may not be possible to �nd the true solution to the

problem. In the present case, however, we are interested in �nding an approximate numerical

solution, say u(z); to the above ODE-BVP. The basic idea in �nite di¤erence approach is

to convert the ODE-BVP into a set of coupled linear or nonlinear algebraic equations using

local approximation of the derivatives based on the Taylor series expansion. In order to

achieve this, the domain 0 � z � 1 is divided into (n+ 1) grid points z1; ::::; zn; zn+1 located
such that

z1 = 0 < z2 < z3::: < zn+1 = 1

The simplest option is to choose them equidistant, i.e.

zi = (i� 1)(�z) = (i� 1)=(n) for i = 1; 2; :::; n+ 1

which is considered for the subsequent development. Let the value of the approximate

solution, u(z); at location zi be denoted as ui = u(zi): If �z is su¢ ciently small, then

the Taylor Series expansion based approximations of the local derivatives presented in the

previous sub-section can be used to discretize the ODE-BVP. The basic idea is to enforce

the approximation of equation (32) at each internal grid point. The remaining equations

are obtained from discretization of the boundary conditions. While discretizing the ODE, it

is preferable to use the approximations having similar accuracies. Thus, central di¤erence

approximation of the �rst derivative is preferred over the forward or the backward di¤erence

approximations as order of error in approxmations is O[(�z)2]; which is similar to the order

of errors in the approximation of the second order derivatives. The steps involved in the

discretization can be summarized as follows:

� Step 1 : Force residual Ri at each internal grid point to zero,i.e.,

Ri = 	

�
(ui+1 � 2ui + ui�1)

(�z)2
;
(ui+1 � ui�1)
2(�z)

; ui; zi

�
= 0 (35)

i = 2; 3:::; n: (36)

This gives rise to (n� 1) equations in (n+ 1) unknowns fui : i = 1; 2; :::; n+ 1g.

� Step 2: Use boundary conditions to generate the remaining algebraic equations. This
can be carried out using either of the following two approaches

14



�Approach 1: Use one-sided derivatives only at the boundary points, i.e.,

f1

�
(u2 � u1)
�z

; u1; 0

�
= 0 (37)

f2

�
(un+1 � un)

�z
; un+1; 1

�
= 0 (38)

This gives remaining two equations.

�Approach 2: This approach introduces two more variables u0 and un+2 at two
hypothetical grid points, which are located at

z0 = z1 ��z = ��z
zn+2 = zn+1 +�z = 1 +�z

With the introduction of these hypothetical points, the boundary conditions are

evaluated as

f1[
(u

2
� u0)

(2�z)
; u1; 0] = 0 (39)

f2[
un+2 � un
(�z)

; un+1; 1] = 0 (40)

Now we have n + 3 variables and n + 1 algebraic constraints. Two additional

algebraic equations are generated by setting the residual at the boundary points

to zero,i.e., at z1 and zn+1,i.e.,

R1(z = 0) = 	

�
(u2 � 2u1 + u0)

(�z)2
;
(u2 � u0)
2(�z)

; u1; 0

�
= 0

Rn+1(z = 1) = 	

�
(un+2 � 2un+1 + un)

(�z)2
;
(un+2 � un)
2(�z)

; un+1; 1

�
= 0

This results in (n+ 3) equations in (n+ 3) unknowns fui : i = 0; 1; 2; :::; n+ 2g.

It may be noted that the local approximations of the derivatives are developed under the

assumption that �z is chosen su¢ ciently small. Consequently, it can be expected that the

quality of the approximate solution would improve with the increase in the number of grid

points.

Example 9 Consider steady state heat transfer/conduction in a slab of thickness L, in which
energy is generated at a constant rate of q W=m3. The boundary at z = 0 is maintained at a

constant temperature T �,while the boundary at z = L dissipates heat by convection with a heat

15



transfer coe¢ cient h into the ambient temperature at T1. The mathematical formulation of

the conduction problem is represented as a ODE-BVP of the form

k
d2T

dz2
+ q = 0 for 0 < z < L (41)

B:C:at z = 0 : T (0) = T � (42)

B:C:at z = L : k

�
dT

dz

�
z=L

= h [T1 � T (L)] (43)

Note that this problem can be solved analytically. However, it is used here to introduce the

concepts of discretization by �nite di¤erence approach. Dividing the region 0 � z � L into
n equal subregions with �z = L=n and setting residuals zero at the internal grid points, we

have
(Ti+1 � 2Ti + Ti�1)

(�z)2
+
q

k
= 0 (44)

for i = 2; 3; ::::n: Using the boundary condition (42) i.e. (T1 = T �), the residual at z2 reduces

to

�2T2 + T3 = �(�z)2
� q
k

�
� T � (45)

Using one sided derivative at z = L, boundary condition (43) reduces to

k
(Tn+1 � Tn)
(�z)

= h(T1 � Tn+1) (46)

or

Tn+1(1 +
h�z

k
)� Tn = h�z

T1
k

(47)

Rearranging the equations in the matrix form, we have

Aex=ey
ex = h T2 T3 ::: Tn+1

iT
ey = h �(�z)2 (q=k)� T � �(�z)2 (q=k) ::: +h(�z)T1=k

iT

A =

2666666664

�2 1 0 0 :: 0

1 �2 1 0 :: 0

0 1 �2 1 :: 0

:: :: :: :: :: ::

:: :: :: :: �2 1

0 0 :: :: �1 (1 + h�z=k)

3777777775
16



Thus, after discretization, the ODE-BVP is reduced to a set of linear algebraic equation and

the transformation operator bT = A. It may also be noted that we end up with a tridiagonal
matrix A, which is a sparse matrix i.e. it contains large number of zero elements.

Example 10 Consider the ODE-BVP describing the steady state conditions in a tubular
reactor with axial mixing (TRAM) in which an irreversible 2nd order reaction is carried out

at a constant temperature. The steady state behavior can be modelled using the following

ODE-BVP:
1

Pe

d2C

dz2
� dC
dz
�DaC2 = 0 (0 � z � 1) (48)

B:C:at z = 0 :
dC

dz
= Pe(C � 1) at z = 0; (49)

B:C:at z = 1 :
dC

dz
= 0 at z = 1; (50)

Forcing residuals at (n-1) internal grid points to zero, we have

1

Pe

Ci+1 � 2Ci + Ci�1
(�z)2

� Ci+1 � Ci�1
2 (�z)

= DaC2i

i = 2; 3; :::n

De�ning

� =

�
1

(�z)2 Pe
� 1

2 (�z)

�
; � =

�
2

Pe (�z)2

�
; 
 =

�
1

(�z)2 Pe
+

1

2 (�z)

�
the above set of nonlinear equations can be rearranged as follows

�Ci+1 � �Ci + 
Ci�1 = DaC2i

i = 2; 3; :::n

The two boundary conditions yield two additional equations

C2 � C1
�z

= Pe(C1 � 1)
Cn+1 � Cn

�z
= 0

The resulting set of nonlinear algebraic equations can be arranged as follow

bT (ex) = Aex�G(ex) =0 (51)
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where

ex =
26666664
C1

C2

:::

:::

Cn+1

37777775 ; G(ex) =
26666664
�Pe (�z)
DaC22
:::::

DaC2n
0

37777775

A=

26666664
�(1 + �zPe) 1 0: ::: ::: 0


 �� � ::: ::: ::

:::: ::: :: ::: ::: 0:

::::: ::: :: ::: �� �

0 ::: :: ::: �1 1

37777775 (52)

Thus, the ODE-BVP is reduced to a set of coupled nonlinear algebraic equations after dis-

cretization.

To provide some insights into how the approximate solutions change as a function of the

choice of n, we have carried out simulation studies on the TRAM problem (with Pe = 6

and Da = 2). Figure 2 demonstrates how the approximate solutions behave as a function of

number of grid points. As can be expected, more and more re�ned soltions are obtained as

number of grid points increase.

3.3 Discretization of PDEs using Finite Di¤erence [2]

Typical second order PDEs that we encounter in engineering problems are of the form

@u

@t
�
�
ar2u+ bru+ cg(u)

�
= f(x; y; z; t)

xL < x < xH ; yL < y < yH ; zL < z < zH

subject to appropriate boundary conditions and initial conditions. For example, the Lapla-

cian operatorsr2 and gradient operatorr are de�ned in the Cartesian coordinates as follows

ru =
@u

@x
+
@u

@y
+
@u

@z

r2u =
@2u

@x2
+
@2u

@y2
+
@2u

@z2

In Cartesian coordinate system, we construct grid lines parallel to x, y and z axis and force

the residuals to zero at the internal grid points. For example,adopting notation

ui;j;k = u(xi;yj;zk)
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1

2:jpg

Figure 2: TRAM Problem: Comparison of approximate solutions constructed using �nite

di¤erence approach with di¤erent number of internal grid points

the partial derivative of the dependent variable u with respect to x at grid point (xi;yj;zk)

can be approximated as follows�
@u

@x

�
ijk

=
(ui+1;j;k � ui�1;j;k)

2(�x)�
@2u

@x2

�
ijk

=
(ui+1;j;k � 2ui;j;k + ui�1;j;k)

(�x)2

The partial derivatives in the remaining directions can be approximated in analogous manner.

It may be noted that the partial derivatives are approximated by considering one variable

at a time and is equivalent to application of Taylor series expansion of a scalar function.

When the PDE involves only the spatial derivatives, the discretization process yields

either coupled set of linear / nonlinear algebraic equations or an ODE-BVP. When the PDEs

involve time derivatives, the discretization is carried out only in the spatial coordinates. As a

consequence, the discretization process yields coupled nonlinear ODEs with initial conditions

speci�ed, i.e. an ODE-IVP.

Example 11 Consider the PDE describing the unsteady state condition in a tubular reactor
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with axial mixing (TRAM) in which an irreversible 2nd order reaction is carried out.

@C

@t
=

1

Pe

@2C

@z2
� @C
@z

�DaC2 in (0 < z < 1) (53)

t = 0 : c(z; 0) = f(z) in (0 < z < 1) (54)

B:C:at z = 0 :
@C(0; t)

@z
= Pe (C(0; t)� 1) for t � 0 (55)

B:C:at z = 1 :
@C(1; t)

@z
= 0 for t � 0 (56)

Using �nite di¤erence method along the spatial coordinate z with n� 1 internal grid points,
we have

dCi(t)

dt
=

1

Pe

�
Ci+1(t)� 2Ci(t) + Ci�1(t)

(�z)2

�
(57)

�
�
Ci+1(t)� Ci�1(t)

2 (�z)

�
�Da [Ci(t)]2 (58)

i = 2; 3; ::::n

The boundary conditions yield

B:C:1 :
C2(t)� C1(t)

�z
= Pe (C1(t)� 1)

) C1(t) =

�
1

�z
+ Pe

��1 �
C2(t)

�z
+ Pe

�
(59)

and

B:C:2 :
Cn+1(t)� Cn(t)

�z
= 0) Cn+1(t) = Cn(t) (60)

These boundary conditions can be used to eliminate variables C1(t) and Cn+1(t) from the

set of ODEs (57). This gives rise to a set of (n-1) coupled ODEs together with the initial

conditions

C2(0) = f (z2) ; C3(0) = f (z3) ; ::::: = Cn(0) = f (zn) (61)

Thus, de�ning vector ex of concentration values at the internal grid points as
ex = h C2(t) C3(t) ::: Cn(t)

iT
the discretized problem is an ODE-IVP of the form

bT (ex) =dex
dt
� F (ex) =0 (62)

subject to the initial condition ex(0). Needless to say that better approximation is obtained if
large number of grid points are selected.
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Example 12 Laplace equation represents a prototype for steady state di¤usion processes.
For example 2-dimensional Laplace equation

�

�
@2T

@x2
+
@2T

@y2

�
= f(x; y) (63)

0 < x < 1 ; 0 < y < 1

where T is temperature and x; y are dimensionless space coordinates. Equations similar to

this arise in many problems of �uid mechanics, heat transfer and mass transfer. In the

present case, T (x; y) represents the dimensionless temperature distribution in a furnace and

� represents thermal di¤usivity. Three walls of the furnace are insulated and maintained

at a constant temperature. Convective heat transfer occurs from the fourth boundary to the

atmosphere. The boundary conditions are as follows:

x = 0 : T = T � ; x = 1 : T = T � (64)

y = 0 : T = T � (65)

y = 1 : k
dT (x; 1)

dy
= h [T1 � T (x; 1)] (66)

We construct the 2 -dimensional grid with (nx + 1) equispaced grid lines parallel to y axis

and (ny +1) equispaced grid lines parallel to x axis. The temperature T at (i; j) th grid point

is denoted as Tij = T (xi;yj):We then force the residual to be zero at each internal grid point

to obtain the following set of equations:

(Ti+1;j � 2Ti;j +Ti�1;j)
(�x)2

+
(Ti;j+1 � 2Ti;j +Ti;j�1)

(�y)2
= f(xi; yj)=� (67)

for (i = 2; 3; :::; nx) and ( j = 2; 3; ::; ny): Note that regardless of the size of the system, each

equation contains not more than �ve unknowns, resulting in a sparse linear algebraic system.

Consider the special case when

�x = �y = �

For this case the above equations can be written as

Ti�1;j + Ti;j�1 � 4Ti;j + Ti;j+1 + Ti+1;j = �
2f(xi; yj) (68)

for (i = 2; 3; :::; nx) and (j = 2; 3; :::; ny)

Using the boundary conditions, we have additional equations

T1;j = T � ; Tnx+1;j = T
� for j = 1; 2; :::; ny

Ti;0 = T � for i = 1; 2; ::::nx + 1
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k
Ti;ny+1 � Ti;ny

�y
= h

�
T1 � Ti;ny+1

�
) Ti;ny+1 =

1

(k=�y) + h

�
hT1 + (k=�y)Ti;ny

�
for i = 1; 2; ::::; nx + 1

that can be used to eliminate the boundary variables from the set of ODEs. Thus, we obtain

(nx � 1) � (ny � 1) linear algebraic equations in (nx � 1) � (ny � 1) unknowns. De�ning
vector ex as ex = [T2;2 T2;3::::::T2;ny ;::::; Tnx;2::::::::Tnx;ny ]T
we can rearrange the resulting set of equations in form of Aex = b, then A turns out to be

a large sparse matrix. Even for modest choice of 10 internal grid lines in each direction, we

would get a 100� 100 sparse matrix associated with 100 variables.

Example 13 Converting a PDE to an ODE-BVP by method of lines [2]: Consider
the 2-D steady state heat transfer problem in the previous example. By method of lines, we

discretize only in one spatial direction. For example, we choose nx � 1 internal grid points
along x coordinate and construct nx � 1 grid lines parallel to the y-axis. The temperature
T along the ith grid line is denoted as

Ti(y) = T (xi; y) (69)

Now, we equate residuals to zero at each internal grid line as

d2Ti
dy2

= � 1

(�x)2
[Ti+1(y)� 2Ti(y) + Ti�1(y)] + f(xi; y)=� (70)

i = 2; 3; ::::nx

The boundary conditions at x = 0 and x = 1 yield

T1(y) = T
� ; Tnx+1(y) = T

�

which can be used to eliminate variables in the above set of ODE that lie on the corresponding

edges. The boundary conditions at y = 0 and y = 1 are:

Ti(0) = T � (71)

k
dTi(1)

dy
= h(T1 � Ti(1)) (72)

i = 2; 3; ::::nx
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Thus, de�ning eu = h T2(y) T3(y) ::: Tn(y)
iT

discretization of the PDE using the method of lines yields OBE-BVP of the form

bT (eu) =d2ey
dy2

� F [eu] = 0
subject to the boundary conditions

eu(0) = T �

deu(1)
dy

= G [eu(1)]
Example 14 Consider the 2-dimensional unsteady state heat transfer problem

@T

@t
= �[

@2T

@x2
+
@2T

@y2
] + f(x; y; t) (73)

t = 0 : T = H(x; y) (74)

x = 0 : T (0; y; t) = T �; x = 1 : T (1; y; t) = T � (75)

y = 0 : T (x; 0; t) = T � ; (76)

y = 1 : k
dT (x; 1; t)

dy
= h(T1 � T (x; 1; t)) (77)

where T (x; y; t) is the temperature at locations (x; y) at time t and � is the thermal di¤usivity.

By �nite di¤erence approach, we construct a 2-dimensional grid with nx � 1 equispaced grid
lines parallel to the y-axis and ny � 1 grid lines parallel to the x-axis. The temperature T at
the (i; j)�th grid point is given by

Tij(t) = T (xi; yi; t) (78)

Now, we force the residual to zero at each internal grid point to generate a set of coupled

ODE-IVP�s as

dTij
dt

=
�

(�x)2
[Ti+1;j � 2Ti;j + Ti�1;j]

+
�

(�y)2
[Ti;j+1 � 2Ti;j + Ti;j�1] + f(xi; yj; t) (79)

for i = 2; 3; :::; nx and j = 2; 3; :::; ny

Using the boundary conditions, we have constraints at the four boundaries

T0;j(t) = T � ; Tnx+1;j(t) = T
� for j = 1; 2; :::ny + 1

Ti;0(t) = T � for i = 1; 2; ::::nx + 1
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k
Ti;ny+1 � Ti;ny

�y
= h

�
T1 � Ti;ny+1

�
) Ti;ny+1(t) =

1

(k=�y) + h

�
hT1 + (k=�y)Ti;ny(t)

�
for i = 2; ::::nx

These constraints can be used to eliminate the boundary variables from the set of ODEs 79.

Thus, de�ning vector

ex(t) = [T2;2(t) T2;3(t)::::T2;ny(t)::::; Tnx;2(t):::::::Tnx;ny(t)]T
the PDE after discretization is reduced to a set of coupled ODE-IVPs of the form

bT (ex) =dex
dt
� F (ex; t) =0

subject to the initial condition ex(0)
ex(0) = [H(x2; y2) H(x2; y3)::::H(xnx ; y2)::::H(xnx ; yny)]T

3.4 Newton�s Method for Solving Nonlinear Algebraic Equations

The most prominent application of the multivariate Taylor series expansion in the numerical

analysis is arguably the Newton�s method, which is used for solving a set of simultaneous

nonlinear algebraic equations. Consider set of n coupled nonlinear equations of the form

fi(x) = 0 for i = 1; ::::; n (80)

which have to be solved simultaneously. Here, each fi(:) : Rn ! R is a scalar function.

De�ning a function vector

F(x) =
h
f1(x) f2(x) ::: fn(x)

iT
the problem at hand is to solve vector equation

F(x) = 0

Suppose x� is a solution such that F (x�) = 0: If each function fi(x) is continuously di¤er-

entiable, then, in the neighborhood of x� we can approximate its behavior by Taylor series,

as

F(x�) = F [ex+(x��ex)] = F(ex) + �@F
@x

�
x=ex (x

��ex) +R2(x
�;x��ex) (81)
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where ex represents a guess solution. If the guess solution is su¢ ciently close to the true
solution, then, neglecting terms higher than the �rst order, we can locally approximate the

nonlinear transformation F(x�) as follows

F(x�) ' eF(x�)= F(ex) + �@F
@x

�
x=ex �ex

�ex = x��ex
and solve for eF(x�) = 0
The approximated operator equation can be rearranged as follows�

@F

@x

�
x=ex [�ex] = �F(ex)

(n� n) matrix� (n� 1) vector = (n� 1) vector

which corresponds to the standard form Ax = b: Solving the above linear equation yields

�ex and, if the guess solution ex is su¢ ciently close to true solution, then
x� � ex+�ex (82)

However, we may not reach the true solution in a single iteration. Thus, equation (82) is

used to generate a new guess solution, say exNew; as follows
exNew = ex+�ex (83)

This process is continued till 


eF(exNew)


 < "1
or

kexNew � exk
kexNewk < "2

where tolerances "1 and "2 are some su¢ ciently small numbers. The above derivation in-

dicates that the Newton�s method is likely to converge only when the guess solution is

su¢ ciently close to the true solution, x�; and the term R2(x
�;x��ex) can be neglected.

4 Discretization using Polynomial Interpolation

Consider a function u(z) to be a continuous function de�ned over z 2 [a; b] and let fu1; u2;:::un+1g
represent the values of the function at an arbitrary set of points fz1; z2; ::::; zn+1g in the do-
main [a; b]: Another function, say eu(z) in C[a; b] that assumes values fu1; u2;:::un+1g exactly
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at fz1; z2; ::::; zn+1g is called an interpolation function. Most popular form of interpolating

functions are polynomials. Polynomial interpolation has many important applications. It

is one of the primary tool used in the approximation of the in�nite dimensional operators

and generating computationally tractable approximate forms. In this section, we examine

applications of polynomial interpolation to discretization. In the development that follows,

for the sake of notational convenience, it is assumed that

z1 = a < z2 < z3 < :::: < zn+1 = b (84)

4.1 Lagrange Interpolation

In Lagrange interpolation, it is desired to �nd an interpolating polynomial p(z) of the form

p(z) = �0 + �1z + :::::+ �nz
n (85)

such that

p(zi) = ui for i = 1; 2; :::n+ 1

To �nd coe¢ cients of the polynomial that passes exactly through fui: i = 1; 2; :::; n + 1g;
consider (n+1) equations

�0 + �1z1 + :::::+ �nz
n
1 = u1

�0 + �1z2 + :::::+ �nz
n
2 = u2

:::: = ::::

�0 + �1zn+1 + :::::+ �nz
n
n+1 = un+1

which can be rearranged as follows

A� = u (86)

where

� =
h
�0 �1 ::: �n

iT
(87)

u =
h
u1 u2 ::: un+1

iT
(88)

A =

26664
1 z1 ::: (z1)

n

1 z2 ::: (z2)
n

::: ::: ::: :::::

1 zn+1 ::: (zn+1)
n

37775
Since matrix A and vector u are known, the coe¢ cients of the Lagrange interpolation poly-

nomial can be found by solving for vector �:
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4.2 Piecewise Polynomial Interpolation [2]

Matrix A appearing in equation (86) is known as Vandermond matrix. Larger dimensional

Vandermond matrices tend to become numerically ill-conditioned (Refer to Section 7 in

Module on Solving Linear Algebraic Equations). Also, if the number of data points is

large, �tting a large order polynomial can result in a polynomial which exhibits unexpected

oscillatory behavior. In order to avoid such oscillations and the di¢ culties arising from ill

conditioning of the Vandermond matrix, the data is divided into sub-intervals and a lower

order spline approximation is developed on each sub-interval. Let [a,b] be a �nite interval.

We introduce a partition of the interval by placing points

a � Z1 < Z2 < Z3:::: < Zn+1 � b

where Zi are called nodes. A function is said to be a piecewise polynomial of degree k on
this partition if in each subinterval Zi � z � Zi+1 we develop a k�th degree polynomial. For
example, a piecewise polynomial of degree one consists of straight line segments. Such an

approximation is continuous at the nodes but will have discontinuous derivatives. In some

applications it is important to have a smooth approximation with continuous derivatives.

A piecewise k�th degree polynomial, which has continuous derivatives up to order k � 1 is
called a spline of degree k. In particular, the case k = 3; i.e. cubic spline, has been studied

extensively in the literature. In this section, we restrict our discussion to the development

of cubic splines. Thus, given a set of points z1 = a < z2 < z3 < :::: < zn+1 = b; the nodes

are chosen as

Zi = zi for i = 1; 2; :::; n+ 1

and n cubic splines that �t (n+ 1) data points can be expressed as

p1(z) = �0;1 + �1;1(z � z1) + �2;1(z � z1)2 + �3;1(z � z1)3 (89)

(z1 � z � z2) (90)

p2(z) = �0;2 + �1;2(z � z2) + �2;2(z � z2)2 + �3;2(z � z2)3 (91)

(z2 � z � z3) (92)

::::::: = :::::::::::::::::::::::

pn(z) = �0;n + �1;n(z � zn) + �2;n(z � zn)2 + �3;n(z � zn)3

(zn � z � zn+1) (93)

There are total 4n unknown coe¢ cients f�0;1; �1;1:::::::�3;ng to be determined. In order to
ensure continuity and smoothness of the approximation, the following conditions are imposed

� Initial point of each polynomial

pi(zi) = ui for i = 1; 2; :::; n (94)
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� Terminal point of the last polynomial

pn(zn+1) = un+1 (95)

� Conditions for ensuring continuity between two neighboring polynomials

pi(zi+1) = pi+1(zi+1) ; i = 1; 2; ::::n� 1 (96)
dpi(zi+1)

dz
=

dpi+1(zi+1)

dz
; i = 1; 2; ::::n� 1 (97)

d2pi(zi+1)

dz2
=

d2pi+1(zi+1)

dz2
; i = 1; 2; ::::n� 1 (98)

which result in 4n� 2 conditions including earlier conditions.

� Two additional conditions are imposed at the boundary points

d2p1(z1)

dz2
=
d2pn(zn+1)

dz2
= 0 (99)

which are referred to as free boundary conditions. If the �rst derivatives at the bound-

ary points are known,

dp1(z1)

dz
= d1 ;

dpn(zn+1)

dz
= dn+1 (100)

then we get the clamped boundary conditions.

Using constraints (94-98) and de�ning �zi = zi+1�zi, we get the following set of coupled
linear algebraic equations

�0;i = ui ; ( i = 1; 2; :::; n) (101)

�0;n + �1;n (�zn) + �2;n (�zn)
2 + �3;n (�zn)

3 = un+1 (102)

�0;i + �1;i (�zi) + �2;i (�zi)
2 + �3;i (�zi)

3 = �0;i+1 (103)

�1;i + 2�2;i (�zi) + 3�3;i (�zi)
2 = �1;i+1 (104)

�2;i + 3�3;i (�zi) = �2;i+1 (105)

for i = 1; 2; :::; n� 1

In addition, using the free boundary conditions, we have

�2;1 = 0 (106)

�2;n + 3�3;n (�zn) = 0 (107)
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Eliminating �3;i using equation (105 and 107), we have

�3;i =
�2;i+1 � �2;i
3 (�zi)

for i = 1; 2; :::; n� 1 (108)

�3;n =
��2;n
3 (�zn)

(109)

and eliminating �1;iusing equations (102,103), we have

�1;i =
1

�zi
(�0;i+1 � �0;i)�

�zi
3
(2�2;i + �2;i+1) (110)

for i = 1; 2; :::; n� 1

�1;n =
un+1 � �0;n

�zn
� (�zn)�2;n � �3;n (�zn)2 (111)

Thus, we get only f�2;i : i = 1; :::; ng as unknowns and the resulting set of linear equations
assume the form

�2;1 = 0 (112)

(�zi�1)�2;i�1 + 2(�zi +�zi�1)�2;i + (�zi)�2;i+1 = bi (113)

for i = 2; :::; n� 1

where

bi =
3(�0;i+1 � �0;i)

�zi
� 3(�0;i � �0;i�1)

�zi�1

=
3(ui+1 � ui)

�zi
� 3(ui � ui�1)

�zi�1

for i = 2; :::; n� 1:

1

3
(�zn�1)�2;n�1 +

2

3
(�zn�1 +�zn)�2;n = bn (114)

bn =
un+1
�zn

�
�
1

�zn
+

1

�zn�1

�
un +

un�1
�zn�1

De�ning vector �2 as

�2 =
h
�2;1 �2;2 ::::::: �2;n

iT
the above set of n equations can be rearranged as

A�2 = b (115)

where A is a (n� n) matrix and b is (n� 1) vector. Elements of A and b can be obtained

from equations (112-114). Note that matrixA will be a near tridiagonal matrix, i.e. a sparse

matrix.Once all the �2;i are obtained, �1;i and �2;i can be easily obtained.
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4.3 Interpolation using Linearly Independent Functions

While polynomial is a popular choice as basis for interpolation, any set of linearly indepen-

dent functions de�ned on [a,b] can be used for developing an interpolating function. Let

ff0(z); f1(z); :::fn(z)g represent a set of linearly independent functions in C[a; b]: Then, we
can construct an interpolating function, g(z); as follows

g(z) = �0f1(z) + :::::::+ �nfn(z) (116)

Forcing the interpolating function to have values ui at z = zi leads to the following set of

linear algebraic equations

�0f0(zi) + :::::::+ �nfn(zi) = ui (117)

i = 0; 1; :::; n

which can be further rearranged as A� = u where [with z0 = 0 and zn = 1]

A =

26664
f0(0) f1(0) :::: fn(0)

f0(z1) f1(z1) :::: fn(z1)

:::: :::: :::: ::::

f0(1) f1(1) :::: fn(1)

37775 (118)

and vectors � and u are de�ned by equations (87) and (88), respectively. Commonly used

interpolating functions are

� Shifted Legandre polynomials

� Chebysheve polynomials

� Trigonometric functions, i.e. sines and cosines

� Exponential functions fe�iz : i = 0; 1; :::ng with �0::::�n speci�ed i.e.

g(z) = �1e
�1z + �2e

�2z + ::::::::::::::::::::::+ �ne
�nz (119)

4.4 Discretization using Orthogonal Collocations [2]

One of the important applications of polynomial interpolation is the method of orthogonal

collocations. By this approach, the di¤erential operator over a spatial / temporal domain is

approximated using an interpolation polynomial.
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4.4.1 Discretization of ODE-BVP

Consider the second order ODE-BVP given by equations (32), (33) and (34a). To see how the

problem discretization can be carried out using Lagrange interpolation, consider a selected

set of collocation (grid) points fzi : i = 1; :::; n+1g in the domain [0; 1] such that z1 = 0 and
zn+1 = 1 and fz2; z3; ::::zng 2 (0; 1) such that

z1 = 0 < z2 < z3 < :::: < zn+1 = 1

Let fui = u(zi) : i = 1; 2; :::; n + 1g represent the values of the dependent variable at these
collocation points. Given these points, we can propose an approximate solution, u(z); of the

form

u(z) = �0 + �1z + :::::+ �nz
n

to the ODE-BVP as an interpolation polynomial that passes exactly through fui : i =
1; :::n+ 1g: This requires that the following set of equations hold

u(zi) = �0 + �1zi + :::::+ �nz
n
i = ui

i = 1; 2; :::; n+ 1

at the collocation points. The unknown polynomial coe¢ cients f�i : i = 0; 1; :::ng can be
expressed in terms of unknowns fui : i = 1; :::; n+ 1g as follows

� = A�1u

where matrix A is de�ned in equation (86). To approximate the OBE-BVP in (0; 1), we

force the residuals at the collocation points to zero using the approximate solution u(z), i.e.

Ri = 	

�
d2u(zi)

dz2
;
du(zi)

dz
; u(zi); zi

�
= 0 (120)

for i = 2; 3; :::n: Thus, we need to compute the �rst and second derivatives of the approximate

solution eu(z) at the collocation points. The �rst derivative at i�th collocation point can be
computed as follows

deu(zi)
dz

= 0�0 + �1 + 2�2zi + :::::::+ n�nz
n�1
i (121)

=
h
0 1 2zi ::: nzn�1i

i
� (122)

=
h
0 1 2zi ::: nzn�1i

i
A�1u (123)

De�ning vector �
s(i)
�T
=
h
0 1 2zi ::: nzn�1i

i
A�1
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we have
deu(zi)
dz

=
�
s(i)
�T
u

Similarly, the second derivative can be expressed in terms of vector u as follows:

d2eu(zi)
dz2

= 0�0 + 0�1 + 2�2 + :::::::+ n(n� 1)�nzn�2i (124)

=
h
0 0 2 ::: n(n� 1)zn�2i

i
� (125)

=
h
0 0 2 ::: n(n� 1)zn�2i

i
A�1u (126)

De�ning vector �
t(i)
�T
=
h
0 0 2 ::: n(n� 1)zn�2i

i
A�1

we have
d2eu(zi)
dz2

=
�
t(i)
�T
u

Substituting for the �rst and the second derivatives of eu(zi) in equations in (120), we have
	
h�
t(i)
�T
u;
�
s(i)
�T
u;ui; zi

i
= 0 (127)

for i = 2; 3:::; n: At the boundary points, we have two additional constraints

f1

�
deu(0)
dz

; u1; 0

�
= f1

h�
s(1)
�T
u; u1; 0

i
= 0

f2

�
deu(1)
dz

; un+1; 1

�
= f2

h�
s(n+1)

�T
u; un+1; 1

i
= 0 (128)

Thus, we have (n+ 1) algebraic equations to be solved simultaneously in (n+ 1) unknowns,

i.e. fui : i = 1; :::; n+ 1g.
It may be noted that the collocation points need not be chosen equispaced. It has

been shown that, if these collocation points are chosen at the roots of nth order orthogonal

polynomial, then the error ju�(z)� u(z)j is evenly distributed in the entire domain of z [2].
For example, one possibility is to choose the orthogonal collocation points at the roots of

shifted Legandre polynomials (see Table 1). In fact, the name orthogonal collocation can be

attributed to the choice the collocation points at the roots of orthogonal polynomials.

Discretization using orthogonal collocation technique requires computation of vectors

{(s(i); t(i)) : i = 1; 2; :::n + 1g; which can be accomplished by solving the following matrix
equations. Let us de�ne matrices S andT such that these vectors form rows of these matrices,

i.e.

S =

266664
�
s(1)
�T�

s(2)
�T

::::�
s(n+1)

�T

377775 ; T =

266664
�
t(1)
�T�

t(2)
�T

::::�
t(n+1)

�T

377775 (129)
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Table 1: Roots of Shifted Legandre Polynomials
Order (m) Roots

1 0.5

2 0.21132, 0.78868

3 0.1127, 0.5, 0.8873

4 0.9305,0.6703, 0.3297, 0.0695

5 0.9543, 0.7662, 0.5034, 0.2286, 0.0475

6 0.9698, 0.8221, 0.6262, 0.3792, 0.1681, 0.0346

7 0.9740, 0.8667, 0.7151, 0.4853, 0.3076, 0.1246, 0.0267

In addition, let us de�ne matrices C and D as follows

C =

26664
0 1 :::: (n)(z0)

n�1

0 1 :::: (n)(z1)
n�1

:::: :::: :::: ::::

0 1 :::: (n)(zn)
n�1

37775

D =

26664
0

0

::::

0

0

0

::::

0

2 6z0 :: n(n� 1) (z0)n�2

2 6z1 :: n(n� 1)(z1)n�2

:::: :::: :: ::::

2 6zn :: n(n� 1) (zn)n�2

37775
It is easy to see that

S = CA�1 ; T = DA�1 (130)

where matrix A is de�ned by equation (86).

Example 15 [2] Consider the ODE-BVP describing steady state conditions in a tubular
reactor with axial mixing (TRAM) in which an irreversible 2nd order reaction is carried out.

Using method of orthogonal collocation with n = 4 and de�ning vector

C =
h
C1 C2 ::: C5

iT
at

z1 = 0; z2 = 0:1127; z3 = 0:5; z4 = 0:8873 and z5 = 1

the matrices A;S and T for the selected set of collocation points are as follows

A =

26666664
1 0 0 0 0

1 0:1127 (0:1127)2 (0:1127)3 (0:1127)4

1 0:5 (0:5)2 (0:5)3 (0:5)4

1 0:8873 (0:8873)2 (0:8873)3 (0:8873)4

1 1 1 1 1

37777775 (131)
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S =

26666664

�
s(1)
�T�

s(2)
�T�

s(3)
�T�

s(4)
�T�

s(5)
�T

37777775 =
26666664
�13 14:79 �2:67 1:88 �1
�5:32 3:87 2:07 �1:29 0:68

1:5 �3:23 0 3:23 �1:5
�0:68 1:29 �2:07 �3:87 5:32

1 �1:88 2:67 �14:79 13

37777775 (132)

T =

26666664

�
t(1)
�T�

t(2)
�T�

t(3)
�T�

t(4)
�T�

t(5)
�T

37777775 =
26666664
84 �122:06 58:67 �44:60 24

53:24 �73:33 26:67 �13:33 6:76

�6 16:67 �21:33 16:67 �6
6:76 �13:33 26:67 �73:33 53:24

24 �44:60 58:67 �122:06 84

37777775 (133)

Forcing the residual to zero at the internal grid points and using the two boundary conditions

we get following set of �ve simultaneous nonlinear algebraic equations:

1

Pe

h�
t(i)
�T
C
i
�
h�
s(i)
�T
C
i
�DaC2i = 0

i = 2; 3; 4

These equations can be expanded as follows

264
53:24
Pe

+ 5:32 �73:33
Pe

� 3:87 26:67
Pe

� 2:07 �13:33
Pe

+ 1:29 6:76
Pe
� 0:68

�6
Pe
� 1:5 16:67

Pe
+ 3:23 �21:33

Pe
16:67
Pe

� 3:23 �6
Pe
+ 1:5

6:76
Pe
+ 0:68 �13:33

Pe
� 1:29 26:67

Pe
+ 2:07 �73:33

Pe
+ 3:87 53:24

Pe
� 5:32

375
26666664
C1

C2

C3

C4

C5

37777775
�Da

264 C22C23
C24

375 =
264 00
0

375
The remaining two equations are obtained by discretization of the bourdary consitions.

B:C:1 :
h�
s(1)
�T
C
i
� Pe(C1 � 1) = 0

B:C:2 :
h�
s(5)
�T
C
i
= 0

or in the expanded form, we have

(�13� Pe)C1 +14:79C2 �2:67C3 +1:88C4 �C5 + Pe = 0

C1 �1:88C2 +2:67C3 �14:79C4 +13C5 = 0
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Figure 3: TRAM Problem: Comparison of approximate solutions constructed using di¤erent

number of orthogonal collocation points.

Thus, the discretization yields a set of �ve nonlinear algebraic equations in �ve unknowns,

which have to be solved simultaneously.

To provide some insights into how the approximate solutions change as a function of

the choice number of collocation points, we have carried out studies on the TRAM problem

(with Pe = 6 and Da = 2). Figure 3 demonstrates how the approximate solutions behave as

a function of number of collocation points. As evident from this �gure, better soltions are

obtained as the number of collocations points increase.

Remark 16 Are the two methods presented above, i.e. �nite di¤erence and collocation

methods, doing something fundamentally di¤erent? Let us compare the following two cases

(a) �nite di¤erence method with 3 internal grid points (b) collocation with 3 internal grid

points on the basis of expressions used for approximating the �rst and second order derivatives

computed at one of the grid points. For the sake of comparison, we have taken equi-spaced grid

points for the collocation method instead of taking them at the roots of 3�rd order orthogonal

polynomial. Thus, for both collocation and �nite di¤erence method, the grid (or collocation)

points are at fz1 = 0; z2 = 1=4; z3 = 1=2; z4 = 3=4; z5 = 1g. Let us compare expressions for
approximate derivatives at z = z3 used in both the approaches.
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� Finite Di¤erence

du(z3)

dz
=

(u4 � u2)
2(�z)

= 2u4 � 2u2 ; �z = 1=4

d2u(z3)

dz2
=

(u4 � 2u3 + u2)
(�z)2

= 16u4 � 32u3 + 16u2

� Collocation

du(z3)

dz
= 0:33u1 � 2:67u2 + 2:67u4 � 0:33u5

d2u(z3)

dz2
= �1:33u1 + 21:33u2 � 40u3 + 21:33u4 � 1:33u5

It is clear from the above expressions that the essential di¤erence between the two ap-

proaches is the way the derivatives at any grid (or collocation) point is approximated. The

�nite di¤erence method takes only immediate neighboring points for approximating the deriv-

atives while the collocation method �nds derivatives as weighted sum of all the collocation

(grid) points. As a consequence, the approximate solutions generated by these approaches

will be di¤erent.

4.4.2 Discretization of PDE�s [2]

Example 17 Consider the PDE describing unsteady state conditions in a tubular reactor
with axial mixing (TRAM) given earlier. Using method of orthogonal collocation with n� 1
internal collocation points, we get

dCi(t)

dt
=

1

Pe

h�
t(i)
�T
C(t)

i
�
h�
s(i)
�T
C(t)

i
�DaCi(t)2

i = 2; 3; :::n

where

C(t) =
h
C1(t) C2(t) ::: Cn+1(t)

i
Ci(t) represents time varying concentration at the i�th collocation point, C(zi; t); and the

vectors
�
t(i)
�T
and

�
s(i)
�T
represent row vectors of matrices T and S: de�ned by equation

(129). The two boundary conditions yield the following algebraic constraintsh�
s(1)
�T
C(t)

i
= Pe(C1(t)� 1)h�

s(n+1)
�T
C(t)

i
= 0
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Thus, the process of discretization in this case yields a set of di¤erential algebraic equations

of the form

dx

dt
= F (x; z)

0 = G(x; z)

which have to be solved simultaneously subject to the speci�ed initial conditions on (x; z):

In the present case, since the algebraic constraints are linear, they can be used to eliminate

variables C1(t) and Cn+1(t) from the set of ODEs resulting from discretization. For example,

when we select 3 internal grid points as discussed in Example 15, the boundary constraints

can be stated as follows

�(13 + Pe)C1(t) +14:79C2(t) �2:67C3(t) +1:88C4(t) �C5(t) = �Pe
C1(t) �1:88C2(t) +2:67C3(t) �14:79C4(t) +13C5(t) = 0

These equations can be used to eliminate variables C0(t) and C4(t) from the three ODEs

fC1(t); C2(t); C3(t)g by solving the following linear algebraic equation"
�(13 + Pe) �1

1 13

#"
C1(t)

C5(t)

#
=

"
�14:79C2(t) +2:67C3(t) �1:88C4(t)� Pe

1:88C2(t) �2:67C3(t) +14:79C4(t)

#

Thus,the resulting set of (n-1) ODEs together with initial conditions

C2(0) = f (z2) ; :::::Cn(0) = f (zn) (134)

is the discretized problem.

Example 18 [2] Consider the 2-dimensional Laplace equation given in Example 12. We
consider a scenario where the thermal di¤usivity � is function of temperature. To begin with,

we choose (nx � 1) internal collocation points along x-axis and (ny � 1) internal collocation
points along the y-axis. Using nx�1 internal grid lines parallel to y axis and ny�1 grid lines
parallel to x-axis, we get (nx� 1)� (ny� 1) internal collocation points. Corresponding to the
chosen collocation points, we can compute matrices (Sx;Tx) and (Sy;Ty) using equations

(130). Using these matrices, the PDE can be transformed as to a set of coupled algebraic

equations as follows

�(Ti;j)
h�
t(i)x
�T
T (j)x +

�
t(j)y
�T
T (i)y

i
= f(xi; yj)

i = 2; :::nx ; j = 2; :::ny
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where vectors T (j)x and T (i)y are de�ned as

T (j)x =
h
T1;j T2;j ::: Tnx+1;j

i
T (i)y =

h
Ti;1 Ti;2 ::: Ti;ny+1

i
At the boundaries, we have

T0;j = T � ; (j = 1; :::ny + 1)

T1;j = T � ; (j = 1; :::ny + 1)

Ti;0 = T � ; (i = 1; :::nx + 1)

k
h
s
(i)
nx+1

iT
T (ny+1)x = h(T1 � T (ny+1)x;i ) for (i = 2; :::nx)

The above discretization procedure yields a set of (nx + 1) � (ny + 1) nonlinear algebraic
equations in (nx + 1)� (ny + 1) unknowns, which have to be solved simultaneously.
To get better insight into discretization, let us consider scenario where we choose three

internal collocation points each along x and y directions. This implies that (Sx = Sy = S)

and (Ty = Tx = T) where S and T matrices are given in Example 15. Now, at an internal

collocation point, say (x2; y3), the residual can be stated as follows

�(T2;3)
h�
t(2)
�T
T (3)x +

�
t(3)
�T
T (2)y

i
= f(x2; y3)

T (3)x =
h
T1;3 T2;3 T3;3 T4;3 T5;3

i
T (2)y =

h
T2;1 T2;2 T2;3 T2;4 T2;5

i
�(T2;3)

n
53:24T1;3 �73:33T2;3 +26:67T3;3 �13:33T4;3 +6:76T5;3

o
+�(T2;3)

n
�6T2;1 +16:67T2;2 �21:33T2;3 16:67T2;4 �6T2;5

o
= f(x2; y3)

4.5 Orthogonal Collocations on Finite Elements (OCFE)

The main di¢ culty with polynomial interpolation is that Vandermond matrix becomes ill

conditioned when the order of interpolation polynomial is selected to be large. A remedy

to this problem is to sub-divide the region into �nite elements and assume a lower order

polynomial spline solution. The collocation points are then selected within each �nite ele-

ment, where the residuals are forced to zero. The continuity conditions (equal slopes) at the

boundaries of neighboring �nite elements gives rise to additional constraints. We illustrate

this method by taking a speci�c example.
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Example 19 [2] Consider the ODE-BVP describing steady state conditions in a tubular
reactor with axial mixing (TRAM) in which an irreversible 2nd order reaction is carried out.

It is desired to solve this problem by OCFE approach.

Step 1: The �rst step is to create �nite elements in the domain. Let us assume that we
create 3 sub-domains. Finite Element 1: 0 � z � 0:3; Finite Element 2: 0:3 � z � 0:7;

Finite Element 3: 0:7 � z � 1: It may be noted that these sub-domains need not be equi-sized.
Step 2: On each �nite element, we de�ne a scaled spacial variable as follows

�1 =
z �Z1
Z2 �Z1

; �2 =
z �Z2
Z3 �Z2

and �3 =
z �Z3
Z4 �Z3

where Z1 = 0;Z2 = 0:3, Z3 = 0:7 and Z4 = 1 represent the boundary points of the �nite

elements: It is desired to develop a polynomial spline solution such that polynomial on each

�nite element is 4�th order. Thus, within each element, we select 3 collocation points at the

root of the 3�rd order shifted Legandre polynomial, i.e.,

� i;1 = 0:1127; � i;2 = 0:5 and � i;3 = 0:8873 for i = 1; 2; 3

In other words, collocation points are placed at

Zi + 0:1127(Zi+1 �Zi); Zi + 0:5(Zi+1 �Zi); and Zi + 0:8873(Zi+1 �Zi) for i = 1; 2; 3

in the i�th element Zi � z �Zi+1:Thus, in the present case, we have total of 9 collocation
points. In addition, we have two points where the neighboring polynomials meet, i.e. at

Z1 = 0:3 and Z2 = 0:7: Thus, there are total of 11 internal points and two boundary points,

i.e. Z1 = 0 and Z4 = 1:

Step 3: Let the total set of points created in the previous step be denoted as fz1; z1;:::z13g
and let the corresponding values of the independent variables be denoted as fC1; C1;:::; C13g :
Note that variables associate with each of the �nite elements are as follows

Finite Element 1 C(1) =
h
C1 C2 C3 C4 C5

iT
Finite Element 2 C(2) =

h
C5 C6 C7 C8 C9

iT
Finite Element 3 C(3) =

h
C9 C10 C11 C12 C13

iT
Now, we force residuals to zero at all the internal collocation points within a �nite element.

Let h1; h2 and h3 denote length of individual �nite elements, i.e.

h1 = Z2 �Z1; h2 = Z3 �Z2 and h3 = Z4 �Z3 (135)

De�ning scaled spatial variables

� i =
z �Zi
Zi+1 �Zi

=
z �Zi
hi
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for i = 1,2,3, the ODE in each �nite element is modi�ed as follows

1

Pe

�
1

h2i

�
d2C

d�2i
�
�
1

hi

�
dC

d� i
�DaC2 = 0 for Zi � z � Zi+1 and i = 1; 2; 3 (136)

The main di¤erence here is that only the variables associated within an element are used

while discretizing the derivatives. Thus, at the collocation point z2 in �nite element 1, the

residual is computed as follows

R2 =
1

Pe

�
1

h21

��
t(2)
�T
C(2) �

�
1

h1

��
s(2)
�T
C(1) �Da (C2)2 = 0 (137)�

t(2)
�T
C(1) = (53:24C1 � 73:33C2 + 26:27C3 � 13:33C4 + 6:67C5)�

s(2)
�T
C(1) = (�5:32C1 + 3:87C2 + 2:07C3 � 1:29C4 + 0:68C5)

where vectors
�
s(2)
�T
and

�
t(2)
�T
are 2nd rows of matrices (132) and (133), respectively.

Similarly, at the collocation point z = z8, which corresponds to � i;3 = 0:8873 in �nite element

2, the residual is computed as follows

R8 =
1

Pe

�
1

h22

��
t(3)
�T
C(2) �

�
1

h2

��
s(3)
�T
C(2) �Da (C8)2 = 0 (138)�

t(3)
�T
C(2) = 6:76C5 � 13:33C6 + 26:67C7 � 73:33C8 + 53:24C9�

s(2)
�T
C(2) = �0:68C5 + 1:29C6 � 2:07C7 � 3:87C8 + 5:32C9

Other equations arising from the forcing the residuals to zero are

Finite Element 1: R3 = R4 = 0

Finite Element 2: R6 = R7 = 0

Finite Element 3: R10 = R11 = R12 = 0

In addition to these 9 equations arising from the residuals at the collocation points, there are

two constraints at the collocation points z4 and z8; which ensure smoothness between the the

two neighboring polynomials, i.e.�
1

h1

��
s(5)
�T
C(1) =

�
1

h2

��
s(1)
�T
C(2)�

1

h2

��
s(5)
�T
C(2) =

�
1

h3

��
s(1)
�T
C(3)

The remaining two equations come from discretization of the boundary conditions.�
1

h1

�h�
s(1)
�T
C(1)

i
= Pe(C0 � 1)�

1

h3

�h�
s(5)
�T
C(3)

i
= 0
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Thus, we have 13 equations in 13 unknowns. It may be noted that, when we collect all the

equations together, we get the following form of equation

AC = F (C)

A =

264 A1 [0] [0]

[0] A2 [0]

[0] [0] A3

375
13�13

C =
h
C0 C1 ::: C12

iT
and F (C) is a 13� 1 function vector containing all the nonlinear terms. Here, A1; A1 and
A3 are each 5� 5 matrices and matrix A is a sparse block diagonal matrix.

The method described above can be easily generalized to any number of �nite elements.

Also, the method can be extended to the discretization of PDEs in a similar way. These

extensions are left to the reader as an exercise and are not discussed separately. Note that

block diagonal and sparse matrices naturally arise when we apply this method.

To provide insights into how the approximate solutions change as a function of the choice

number of collocation points and �nite element, we have carried out studies on the TRAM

problem (with Pe = 6 and Da = 2). Figure 4 demonstrates how the approximate solutions

behave as a function of number of collocation points when di¤erent number of �nite elements

are constructed such that each segment has three internal collocation points. Finally, so-

lutions obtained using �nite di¤erence (FD), orthogonal collocation (OC) and OC on �nite

elements (OCFE) are compared in Figure 5. This �gure demonstrates that orthogonal collo-

cation based approach is able to generate an approximate solution, which is comparable to

FD solution with large number of grid points, using signi�cantly less number of collocation

points and hence signi�cantly less computational cost.

5 Least Square Approximations

While constructing an interpolation polynomial, we require that the interpolating function

passes exactly through the speci�ed set of points (see Figure 6). Alternatively, one can relax

the requirement that the approximating function passes exactly through the desired set of

points. Instead, an approximate function is constructed such that it captures the trend in

variation of the dependent variable in some optimal way (see Figure 7).

In the development that follows, we slightly change the way the data points are numbered

and the �rst data point is indexed as (u1; z1). Thus, we are given a data set f(ui; zi) : i =
1; :::ng where ui denotes the value dependent variable at z = zi such that . fzi : i = 1; :::ng 2
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Comparison

4:jpg

Figure 4: TRAM Problem: Comparison of solutions obtained using OCFE

Figure 5: TRAM Problem: Comparison of FD, OC and OCFE soltions
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Figure 6: Interpolating function: passes through all the points

Figure 7: Approximating function: captures trend but does not pass through all the points
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C[a; b]:Let ff1(z); :::fm(z)g represent a set of linearly independent functions in C[a; b]: Then,
we can propose to construct an approximating function, say g(z); as follows

g(z) = �1f1(z) + :::::::+ �mfm(z) (139)

where m < n; where the unknown coe¢ cients f�1; :::�mg are determined from the data set

in some optimal manner. De�ning approximation error at point zi as

ei = ui � [�1f1(zi) + :::::::+ �mfm(zi)] (140)

i = 1; 2; :::n

and error vector, e; as follows

e =
h
e1 e2 :::: en

iT
the problem of �nding best approximation g(z) is posed as �nding the parameters f�1; :::�mg
such that some norm of the error vector (e) is minimized. Most commonly used norm is

weighted two norm, i.e.

kek2w;2 = he; eiW = eTWe =
nX
i=1

wie
2
i

where

W = diag
h
w1 w2 ::: wn

i
and wi > 0 for all i. The set of equations (140) can be expressed as follows

e = u�A�

� =
h
�1 �2 ::: �m

iT
(141)

u =
h
u1 u2 ::: un

iT
(142)

A =

26664
f1(z1) f2(z1) :::: fm(z1)

f1(z2) f2(z2) :::: fm(z2)

:::: :::: :::: ::::

f1(zn) f2(zn) :::: fm(zn)

37775 (143)

It may be noted that e 2Rn;u 2Rn;� 2Rm and A is a non-square matrix of dimension

(n�m):Thus, it is desired to choose a solution that minimizes the scalar quantity � = eTWe;
i.e.

min

�
� =

min

�
eTWe =

min

�
(u�A�)TW (u�A�) (144)
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The resulting approximate function is called the least square approximation. Another op-

tion is to �nd the parameters such that in�nite-norm of vector e is minimized w.r.t. the

parameters, i.e.

min kek1 = min
"
max

i
jeij
#

These problems involve optimization of a scalar function with respect to minimizing argu-

ment �; which is a vector. The necessary and su¢ cient conditions for qualifying a point to

be an optimum are given in the Appendix.

5.1 Solution of Linear Least Square Problem

Consider the minimization problem

min

�

n
� =(u�A�)TW (u�A�)

o
(145)

To obtain a unique solution to this problem, the matrices A and W should satisfy the

following conditions

� Condition C1: Matrix W should be positive de�nite

� Condition C2: Columns of matrix A should be linearly independent

Using the necessary condition for optimality, we have

@�

@�
= 0

Rules of di¤erentiation of a scalar function f = xTBy with respect to vectors x and y can

be stated as follows

@

@x
(xTBy) = By (146)

@

@y
[xTBy] = BTx (147)

@

@x
[xTBx] = 2 Bx (when B is symmetric) (148)

Applying the above rules to the scalar function

� = uTWu� (A�)TWu� uTWA� + �T (ATWA)�

together with the necessary condition for the optimality yields the following constraint

@�

@�
= �ATWu�ATWu+ 2(ATWA)� = 0 (149)
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Rearranging the above equation, we have

(ATWA) �LS = A
TWu (150)

It may be noted that we have used the fact thatWT =W and matrix ATWA is symmetric.

Also, even though A is a non-square (n �m) matrix, ATWA is a (m �m) square matrix.
When Conditions C1 and C2 are satis�ed, matrix (ATWA) is invertible and the least square

estimate of parameters � can computed as

�LS =
�
ATWA

��1 �
ATW

�
u (151)

Thus, the linear least square estimation problem is �nally reduced to solving linear equations.

Using the su¢ cient condition for optimality, the Hessian matrix�
@2�

@�2

�
= 2(ATWA) (152)

should be positive de�nite or positive semi-de�nite for the stationary point to be a minimum.

When Conditions C1 and C2 are satis�ed, it can be easily shown that

xT
�
ATWA

�
x =(Ax)TW (Ax) � 0 for any x 2Rm (153)

Thus, the su¢ ciency condition is satis�ed and the stationary point is a minimum. As � is a

convex function, it can be shown that the solution �LS is the global minimum of � = eTWe.

5.2 Geometric Interpretation of Linear Least Squares Approxima-
tion [11]

A special case of the above result is whenW = I: The least square estimate of the parameter

vector � can be computed as follows

�LS =
�
ATA

��1
ATu (154)

In the previous subsection, this result was derived by purely algebraic manipulations. In this

section, we interpret this result from the geometric viewpoint.

5.2.1 Distance of a Point from a Line

Suppose we are given a vector b 2R3 and we want to �nd its distance from the line in the

direction of vector a 2R3: In other words, we are looking for a point p along the line that

is closest to b (see Figure 8);i.e. p =�a such that

kek2 = kp� bk2 = k�a� bk2 (155)
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is minimum. This problem can be solved by minimizing � = kek22 with respect to �; i.e.

min

�
� =

min

�
h�a� b;�a� bi (156)

=
min

�

�
�2 ha; ai � 2� ha;bi+ hb;bi

�
(157)

Using necessary condition for optimality,

@�

@�
= � ha; ai � ha;bi = 0 (158)

) �LS =
ha;bi
ha; ai (159)

p = � a =
ha;bi
ha; aia (160)

Now, equation (158) can be rearranged as

ha;�ai � ha;bi = ha;�LSa� bi = ha;p� bi = 0 (161)

which implies that the error vector e = p� b is perpendicular to a: From school geometry,

we know that if p is such a point, then the vector (b� p) is perpendicular to direction a:We
have derived this geometric result using principles of optimization. Equation (160) can be

further rearranged as

p =

*
ap
ha; ai

;b

+
ap
ha; ai

= hba;biba (162)

where ba = ap
ha; ai

is unit vector along direction of a and point p is the projection of vector

b along direction ba:Note that the above derivation holds in any general n dimensional space
a;b2Rn or even any in�nite dimensional vector space.
The equation can be rearranged as

p = a

�
aTb

aTa

�
=

�
1

aTa

� �
aaT

�
b = Pr:b (163)

where Pr = 1
aTa
aa

T is a n� n matrix and is called as projection matrix, which projects
vector b into its column space.

5.2.2 Distance of a point from Subspace

The situation is exactly same when we are given a point b 2R3 and plane S in R3, which
is spanned by two linearly independent vectors

�
a(1); a(2)

	
: We would like to �nd distance
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Figure 8: Schematic representation of porjection of a point, b , on line, a.

of b from S;i.e. a point p 2S such that kp� bk2 is minimum (see Figure 9). Again, from

school geometry, we know that such point can be obtained by drawing a perpendicular from

b to S ; p is the point where this perpendicular meets S (see Figure 9). We would like to

formally derive this result using optimization.

More generally, consider a m dimensional subspace S of Rn such that

S = span
�
a(1); a(2); ::::; a(m)

	
where the vectors

�
a(1); a(2); ::::; a(m)

	
2 Rn are linearly independent vectors. Given an

arbitrary point b 2Rn , the problem is to �nd a point p in subspace S such that it is closest
to vector b (see Figure 9). As p 2 S we have

p = �1a
(1) + �2a

(2) + ::::+ �ma
(m) =

mX
i=1

�ia
(i) (164)

In other words, we would like to �nd a point p 2 S such that 2-norm of the error vector,

e = p� b;i.e.

kek2 = kp� bk2 =






 

mX
i=1

�ia
(i)

!
�b






2

(165)

is minimum. This problem is equivalent to minimizing � = kek22 ; i.e.

�LS =
min

�
� =

min

�

* 
mX
i=1

�ia
(i)�b

!
;

 
mX
i=1

�ia
(i)�b

!+
(166)
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Figure 9: Schematic representation of projection of a point, b; on column space of matrix

A;

Using the necessary condition for optimality, we have

@�

@�j
=

*
a(j);

 
mX
i=1

�ia
(i)�b

!+
=

�
a(i)
�
; (p� b)

�
= 0 (167)

j = 1; 2; :::m

Equation (167) has a straight forward geometric interpretation. Vector p� b is orthogonal
to each vector a(i), which forms the basis of S, and the point p is the projection of b into

subspace S. Equation (167) can be further rearranged as follows*
a(j);

mX
i=1

�ia
(i)

+
=

mX
i=i

�i


a(j); a(i)

�
=


a(j);b

�
(168)

j = 1; 2; :::m (169)

Collecting the above set of equations and using vector-matrix notation, we arrive at the

following matrix equation26664


a(1); a(1)

� 

a(1); a(2)

�
::::



a(1); a(m)

�

a(2); a(1)

� 

a(2); a(2)

�
::::



a(2); a(m)

�
::::: ::::: ::::: :::::

a(m); a(1)

� 

a(m); a(2)

�
:::::



a(m); a(m)

�
37775
26664
�1

�2

::::

�m

37775 =
26664


a(1);b

�

a(2);b

�
::::

a(m);b

�
37775 (170)

49



which is called the normal equation. Now, consider the n �m matrix A constructed such

that vector a(i) forms i�th column of A; :i.e.

A =
h
a(1) a(2) ::: a(m)

i
It is easy to see that

ATA =

26664


a(1); a(1)

� 

a(1); a(2)

�
::::



a(1); a(m)

�

a(2); a(1)

� 

a(2); a(2)

�
::::



a(2); a(m)

�
::::: ::::: ::::: :::::

a(m); a(1)

� 

a(m); a(2)

�
:::::



a(m); a(m)

�
37775 ; ATb

26664


a(1);b

�

a(2);b

�
::::

a(m);b

�
37775

In fact, equation (170) is general and holds for any de�nition of the inner product such as

a(i); a(j)

�
W
=
�
a(i)
�T
Wa(j)

For the later choice of the inner product, the normal equation (170) reduces to

(ATWA) �LS = A
TWb

which is identical to equation (150).

5.2.3 Additional Geometric Insights

To begin with, we de�ne fundamental sub-spaces associated with a matrix.

De�nition 20 (Column Space): The space spanned by column vectors of matrix A is

de�ned as column space of the matrix and denoted as R(A).

It may be noted that when matrix A operates on vector x; it produces a vector Ax 2
R(A); i.e. a vector in the column space of A. Thus, the system Ax = b can be solved if

and only if b belongs to the column space of A: i.e., b 2 R(A):

De�nition 21 (Row Space):The space spanned by row vectors of matrix A is called as

row space of matrixA and denoted as R(AT ).

De�nition 22 (Null space): The set of all vectors x such that Ax = �0 is called as null
space of matrix A and denoted as N(A):

De�nition 23 (Left Null Space) :The set of all vectors y such that ATy = �0 is called

as null space of matrix A and denoted as N(AT ):
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The following fundamental result, which relates dimensions of row and column spaces

with the rank of a matrix, holds true for any m� n matrix A:

Theorem 24 (Fundamental Theorem of Linear Algebra): Given a m� n matrix A

dim[R(A) ] = Number of linearly independent columns of A = rank(A)

dim[N(A)] = n� rank(A)

dim[R(AT ) ] = Number of linearly independent rows of A = rank(A)

dim[N(AT ) ] = m� rank(A)

In other words, the number of linearly independent columns of A equals the number of

linearly independent rows of A.

With this background on the vector spaces associated with a matrix, the following com-

ments regarding the projection matrix are in order.

� If columns of A are linearly independent, then matrix ATA is invertible and, the point

p, which is projection of b onto column space of A (i.e. R(A)) is given as

p = A�LS = A
�
ATA

��1 �
AT
�
b = [Pr]b (171)

Pr = A
�
ATA

��1 �
AT
�

(172)

Here matrix Pr is the projection matrix, which projects vector b onto R(A); i.e. the

column space of A: Note that [Pr]b is the component of b in R(A)

b� (Pr)b = [I � Pr]b (173)

is component of b ? to R(A): Thus we have a matrix formula of splitting a vector

into two orthogonal components.

� Projection matrix has two fundamental properties.

� [Pr]
2 = Pr

� [Pr]
T = Pr

Conversely, any symmetric matrix with A2 = A represents a projection matrix.
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� Suppose then b 2 R(A); then b can be expressed as linear combination of columns of
A i.e.,the projection of b is still b itself.

p = Ab� = b (174)

This implies

p = A(ATA)�1ATb = A(ATA)�1
�
ATA

� b� = Ab� = b (175)

The closest point of p to b is b itself

� At the other extreme, suppose b ? R(A). Then

p = A(ATA)�1ATb = A(ATA)�1�0 = �0 (176)

� When A is square and invertible, every vector projects onto itself, i.e.

p = A(ATA)�1ATb = (AA�1)(AT )�1ATb = b

� Matrix
�
ATA

��1 �
AT
�
is called as pseudo-inverse of matrix A as post multiplication

of this matrix by A yields the identity matrix.

5.3 Projection Theorem in a General Hilbert Space [6]

Equations we have derived in the above sub-sections are special cases of a very general result

called projection theorem, which holds in any Hilbert space. Although we state this
result here without giving a formal proof, the discussion in the above subsections provided

su¢ cient basis for understanding the theorem.

Theorem 25 Classical Projection Theorem : Let X be a Hilbert space and S be a �nite

dimensional subspace of X: Corresponding to any vector u 2X; there is unique vector p 2S
such that ku� pk2 � ku� sk2 for any vector s 2 S: Furthermore, a necessary and su¢ cient
condition for p 2S be the unique minimizing vector is that vector (u� p) is orthogonal to
S:

Thus, given any �nite dimensional sub-space S spanned by linearly independent vectors�
a(1); a(2); :::::::; a(m)

	
and an arbitrary vector u 2X we seek a vector p 2S

p = �1a
(1) + �2a

(2) + ::::+ �ma
(m)

such that 

u� ��1a(1) + �2a(2) + ::::+ �ma(m)�

2 (177)

52



is minimized with respect to scalars b�1;::::; b�m: Now, according to the projection theorem,
the unique minimizing vector p is the orthogonal projection of u on S: This translates to

the following set of equations

u� p; a(i)

�
=



u�
�
�1a

(1) + �2a
(2) + ::::+ �ma

(m)
�
; a(i)

�
= 0 (178)

for i = 1; 2; :::m

This set of m equations can be written as

G� =

26664


a(1); a(1)

� 

a(1); a(2)

�
::::



a(1); a(m)

�

a(2); a(1)

� 

a(2); a(2)

�
::::



a(2); a(m)

�
::::: ::::: ::::: :::::

a(m); a(1)

� 

a(m); a(2)

�
:::::



a(m); a(m)

�
37775
26664
�1

�2

::::

�m

37775 =
26664


a(1);u

�

a(2);u

�
::::

a(m);u

�
37775 (179)

This is the general form of normal equation resulting from the minimization problem. The
m�m matrixG on L.H.S. is called as Gram matrix. If vectors

�
a(1); a(2); :::::::; a(m)

	
are lin-

early independent, then Grammatrix is nonsingular. Moreover, if the set
�
a(1); a(2); :::::::; a(m)

	
is chosen to be an orthonormal set, say

�
e(1); e(2); :::::::; e(m)

	
; then Gram matrix reduces to

identity matrix i.e. G = I and we have

p = �1e
(1) + �2e

(2) + ::::+ �me
(m) (180)

where

�i =


e(i);u

�
as


e(i); e(j)

�
= 0 when i 6= j: It is important to note that, if we choose orthonormal set�

e(1); e(2); :::::::; e(m)
	
and we want to include an additional orthonormal vector, say e(m+1);

to this set, then we can compute �m+1 as

�m+1 =


e(m+1);y

�
without requiring to recompute �1; ::::�m:

Remark 26 Given any Hilbert space X and a orthonormal basis for the Hilbert space�
e(1); e(2); ::; e(m); :::

	
we can express any vector u 2X as

u = �1e
(1) + �2e

(2) + ::::+ �me
(m) + :::::: (181)

�i =


e(i);u

�
(182)

The series

u =


e(1);u

�
e
(1)
+


e(2);u

�
e(2) + :::::::::::+



e(i);u

�
e(i) + :::: (183)

=
1X
i=1



e(i);u

�
e
(i)

(184)
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which converges to element u 2X is called as generalized Fourier series expansion
of element u and coe¢ cients �i =



e(i);u

�
are the corresponding Fourier coe¢ cients.

The well known Fourier expansion of a continuous function over interval [��; �] using
fsin(kt); cos(kt) : k = 0; 1; :::g is a special case of this general result.

5.3.1 Simple Polynomial Models and Hilbert Matrices [11, 7]

Consider problem of approximating a continuous function, say u(z), over interval [0; 1] by a

simple polynomial model of the form

bu(z) = �1 + �2z + �3z2 + ::::::+ �m+1zm (185)

Let the inner product on C(2)[0; 1] is de�ned as

hh(z); g(z)i =
1Z
0

h(z)g(z)dz

We want to �nd a polynomial of the form (185), which approximates u(z) in the least square

sense. Geometrically, we want to project u(z) in the (m+1) dimensional subspace of C(2)[0; 1]

spanned by vectors

f1(z) = 1; f2(z) = z ; f3(z) = z
2; ::::::; fm+1(z) = z

m (186)

Using projection theorem, we get the normal equation26664
h1;1i h1;zi :::: h1;zmi
hz;1i hz;zi :::: hz;zmi
::::: ::::: ::::: :::::

hzm;1i hzm;zi ::::: hzm;zmi

37775
26664
�1

�1

::::

�m+1

37775 =
26664
h1;u(z)i
hz;u(z)i
::::

hzm;u(z)i

37775 (187)

Element hij of the matrix on L.H.S. can be computed as

hij =

1Z
0

zj+i�2 dz =
1

i+ j � 1 (188)

and this reduces the above equation to

Hm+1

26664
�1

�1

::::

�m+1

37775=
26664
h1;u(z)i
hz;u(z)i
::::

hzm; u(z)i

37775 (189)
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where

Hm+1 =

26664
1 1=2 1=3 ::: 1=m

1=2 1=3 1=4 ::: 1=(m+ 1)

::: ::: ::: ::: :::

1=m ::: ::: ::: 1=(2m� 1)

37775
(m+1)�(m+1)

(190)

The matrix Hm+1 is known as Hilbert matrix and this matrix is highly ill-conditioned for

m + 1 > 3: The following table shows condition numbers for a few values of m:(Refer to

Lecture Notes on Solving Linear Algebraic Equations to know about the concept of condition

number and matrix conditioning).

m+ 1 3 4 5 6 7 8

c2(H) 524 1.55e4 4.67e5 1.5e7 4.75e8 1.53e10
(191)

Thus, for polynomial models of small order, say m = 3 we obtain good situation, but

beyond this order, what ever be the method of solution, we get approximations of less and

less accuracy. This implies that approximating a continuous function by polynomial of type

(185) with the choice of basis vectors as (186) is extremely ill-conditioned problem from the

viewpoint of numerical computations. Also, note that if we want to increase the degree of

polynomial to say (m+1)from m, then we have to recompute �1; ::::; �m+1 along with �m+2:

On the other hand, consider the model

by(z) = �1p1(z) + �2p2(z) + �3p3(z) + :::::::::::::+ �mpm(z) (192)

where pi(z) represents the i�th order orthonormal basis function on C(2)[0; 1] i.e.

hpi(z); pj(z)i =
(
1 if i = j

0 if i 6= j

)
(193)

the normal equation reduces to26664
1 0 :::: 0

0 1 :::: 0

::::: ::::: ::::: :::::

0 0 ::::: 1

37775
26664
�1
�2
::::

�m

37775 =
26664
hp1(z);u(z)i
hp2(z);u(z)i
::::

hpm(z); u(z)i

37775 (194)

or simply

�i = hpi(z);u(z)i ; i = 1; 2; ::::m (195)

Obviously, the approximation problem is extremely well conditioned in this case. In fact, if

we want to increase the degree of polynomial to say (m + 1) from m, then we do not have

to recompute �1; ::::; �m as in the case basis (186). We simply have to compute the �m+1 as

�m+1 = hpm+1(z);u(z)i (196)
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The above illustration of approximation of a function by orthogonal polynomials is a special

case of what is known as generalized Fourier series expansion.

5.3.2 Approximation of Numerical Data by a Polynomial [7]

Suppose we only know numerical fu1; u2; ::::::ung at points fz1; z2; ::::::zng 2 [0; 1] and we
want to develop a simple polynomial model of the form given by equation (185). Substituting

the data into the polynomial model leads to an overdertermined set of equations

ui = �1 + �2zi + �3z
2
i + :::::+ �mz

m�1
i + ei (197)

i = 1; 2; :::::n (198)

The least square estimates of the model parameters ( forW = I) can be obtained by solving

normal equation

(ATA)b� = ATu (199)

where

A =

264 1 z1 z21 ::: zm�11

::: ::: ::: ::: :::::::

1 zn z2n ::: zm�1n

375 (200)

ATA =

26664
n

P
zi

P
z2i ::::

P
zm�1iP

zi
P
z2i ::::: ::::

P
zmi

::::: ::::: ::::: :::: ::::::P
zm�1i ::::: ::::: ::::

P
z2m�2i

37775 (201)

i.e.,

(ATA)jk =
nX
i=1

zj+k�2i (202)

Let us assume that zi is uniformly distributed in interval [0; 1]. For large n, approximating

dz = zi � zi�1 ' 1=n;we can write

�
ATA

�
jk

=
nX
i=1

zj+k�2i
�= n

1Z
0

zj+k�2 dz =
n

j + k � 1 (203)

( j; k = 1; 2; :::::;m ) (204)

Thus, we can approximate (ATA) matrix by the Hilbert matrix

(ATA) = n(H) = n

26664
1 1=2 1=3 ::: 1=m

1=2 1=3 1=4 ::: 1=(m+ 1)

::: ::: ::: ::: :::

1=m ::: ::: ::: 1=(2m� 1)

37775 (205)
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which is highly ill- conditioned for large m. Thus, whether we have a continuous function

or numerical data over interval [0; 1]; the numerical di¢ culties persists as the Hilbert matrix

appears in both the cases.

5.4 Function Approximation based Models in Engineering

Function approximations based models play important role in design and scaling of a new

process or understanding static/dynamic behavior of an existing plant. Typically, such mod-

els are gray box type i.e. they are developed by judiciously using function approximations
using variables or groups of variables, which are relevant from the viewpoint of physics.

Such models involve a number of unknown parameters, which have to be estimated from the

experimental data. In general, these models can be expressed in abstract form as

y = f(x;�)

where x 2 Rm represents vector of independent variables (e.g.. temperature, pressure, con-

centration, current, voltage etc.) and let y 2 R denotes dependent variable, f(:) represents
proposed functional relationship that relates y with x and � 2 Rl represent vector of model
parameters.

Example 27 Correlations

1. Speci�c heat capacity at constant pressure (Cp; ), as a function of temperature

CP = a+ bT + cT
2 (206)

y � Cp ; x � T ;� �
h
a b c

iT
2. Dimensionless analysis is mass transfer / heat transfer

Sh = �0 Re
�1 Sc�2 (207)

y = Sh ; x = [Re Sc]T ; � �
h
�0 �1 �2

iT
Nu = �0Re

�1Pr�2
�
�a=�p

��3 (208)

y = Nu ; x = [Re Pr]T ; � �
h
�0 �1 �2 �3

iT
3. Friction factor as a function of Reynold�s number for turbulent �ow

1=
p
f = � log(Re

p
f)� � (209)

y = f ; x =Re ; � �
h
� �

iT
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4. Equation(s) of state: e.g. Radlisch-Kwong equation

P =
RT

V � b �
a

T 1=2(V + b)V
(210)

y = P ; x =
h
T V

iT
; � �

h
a b

iT
or Van der Waals equation

(P +
a

V 2
)(V � b) = RT (211)

y = P ; x =
h
T V

iT
; � �

h
a b

iT
5. Antoine equation for estimating vapor pressure of a pure component

log(Pv) = A�
B

T + C
(212a)

y = log(Pv) ; x = T ; � �
h
A B C

iT
6. Reaction rate models:

�rA = �
�
dCA
dt

�
= ko exp(�E=RT ) (CA)n (213)

y � �rA ; x � [CA T ] T ; � �
h
n E ko

iT
5.4.1 Classi�cation of Models

Based on the manner in which the parameters appear in model equations, we can categorize

the model as follows:

� Linear in parameter models: The most common type of approximation considered
is from the class of functions

y = �1f1(x) + �2f2(x) + :::::+ �mfm(x)

As the parameters �1; :::�m appear linearly in the model, the model is called as linear

in parameter model. Note that fi(x) can be nonlinear functions of x:

� Nonlinear in parameter models: In many problems the parameters appear non-
linearly in the model, i.e.

y = f (x ; �1::::; �m) (214)

where f is a nonlinear function of parameters �1:::; �m:

58



Example 28 Linear and Nonlinear in Parameter Models

� More commonly used linear forms are

� Simple polynomials

y = �1 + �2x+ �3x
2 + ::::+ �mx

m�1

�Legendre polynomials

y = �1L0(x) + �2L1(x) + ::::+ �mLm�1(x) (215)

�Fourier series

y = �1 sin(!x) + �2 sin(2!x) + :::+ �m sin(m!x) (216)

�Exponential form with �1:::�m speci�ed

y = �1e
�1x + �2e

�2x + ::::+ �me
�mx (217)

Example 29 � Reaction rate model (equation 213), model for friction factor (equation
209), Antoine equation (eq. 212a), heat and mass transfer correlations (equations

208 and 207) are examples of nonlinear in parameter models. However, some of these

models can be transformed to linear in parameter models. For example, the transformed

reaction rate model

log(�rA) = log(ko) + n logCA �
E

R

�
1

T

�
5.4.2 Formulation of Parameter Estimation Problem

Estimation of model parameter from experimental data is not an easy task as the data

obtained from experiments is always in�uenced by uncertain variation of uncontrollable

and unknown variables, which occur while conducting experiments and collecting data. In

modeling parlance, the data is corrupted with unmeasured inputs and measurement errors.

For example,

� If we measure �ow, pressure, temperature etc., through electronic transmitters, there
are measurement errors or noise in the measurements due to local electrical distur-
bances.

59



� While conducting experiments involving heating with a steam coil, unmeasured �uc-

tuations in steam header pressure may introduce variations in the rate of heating

In any experimental evaluation, we can list many such unknown factors which in�u-

ence the data. Apart from these in�uences, the proposed mathematical models are often

approximate descriptions of underlying phenomenon and additional errors are introduced

due to limitations imposed by modeling assumptions. Thus, when we develop a model from

experimental data, we can identify three possible sources of errors:

� Measurement errors : Errors in measurements of various recorded variables can be
modelled as follows

y = yT + v (218)

Here, yT 2 R denote the true value of dependent variable and v denotes error in the
measurement.

� Unmeasured inputs: Unrecorded in�uences can be modelled as follows

x = xT+" (219)

Here, xT 2 Rn denote a vector of true values of independent variables (e.g.. tempera-
ture, pressure, concentration, current, voltage etc.) and " denotes error in knowledge

of x:

� Modeling Errors : Errors arising due to fact that the model equation(s) represents
only an approximate description of the reality.

yT = f (xT ;�)+� (220)

where � denotes modeling error.

Equations (218) and (220) can be combined as follows

y = f (xT ;�)+(� + v) = f (xT ;�)+e (221)

where the combined error, e, is often referred to as equation error.

When we collect data from a set of N experiments, we get a set of measurements x(k)

and yk for k = 1; 2; :::N:. Given these measurements, the model relating these measured

quantities can be stated as

x(k) = x
(k)
T +"

(k)

yk = f
�
x
(k)
T ;�

�
+ek

k = 1; 2; :::N

60



where � 2 Rp is the unknown parameter vector. Thus, we have 2N equations in 2N+p

unknown variable, i.e.
�
"(k) : k = 1; 2; :::N

	
,
�
e(k) : k = 1; 2; :::N

	
and p elements of vector

�; and there are in�nite possible solutions to these under-determined set of equations. We

choose to �nd a solution, which is optimal in some sense i.e. it minimizes some index of the

errors. For example, the most general problem of estimating the parameter vector � can be

formulated as follows

Estimate of � such that

min

�; fx(k)T g

"
NX
k=1

�
"(k)
�T
W"(k) +

NX
k=1

(ek)
2

#
subject to

ek = yk � f
�
x
(k)
T ;�

�
and "(k) = x(k) � x(k)T

for k = 1; 2; ::::N

where W represents a symmetric positive de�nite weighting matrix. Given a data set,

formulation and solution of the above general modeling problem is not an easy task. The

above optimization problem is simpli�ed if we additionally assume that the errors in all

independent variables are negligible i.e. x = xT :Under this assumption, the model parameter

estimation problem can be stated as estimation of � such that

�opt =
min

�

NX
k=1

(ek)
2

ek = yk � f
�
x
(k)
T ;�

�
for k = 1; 2; ::::N

These is classical least square parameter estimation problem. For the special case when

the model is linear in parameters, the least square estimates of � can be computed analyt-

ically using the linear least square approach. When the model is nonlinear, the resulting

optimization has to be solved numerically using iterative search procedures.

5.4.3 Least Square Formulation for Linear In Parameter Models

Suppose the following model is proposed for a phenomenon

by = mX
j=1

�j fj (x) (222)

where x 2 Rr and we have N experimental data sets f (x(k); yk) : k = 1; ::::::N g. De�ning
the kth approximation error as

ek = yk �
mX
j=1

�j fj(x
(k)) (223)
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it is desired to choose a solution (�1::::�m) that minimizes the scalar quantity

min

�1::::�m

"
f =

NX
k=1

wke
2
k

#
(224)

subject to

e1 = y1 �
�
�1f1(x

(1)) + �2f2
�
x(1)
�
+ :::::+ �mfm(x

(1))
�

(225)

e2 = y2 �
�
�1f1(x

(2)) + �2f2
�
x(2)
�
+ :::::+ �mfm(x

(2))
�

(226)

::::: = :::::::::::::::::::::::::::::::::::::::::::::

eN = yN �
�
�1f1(x

(N)) + �2f2
�
x(N)

�
+ :::::+ �mfm(x

(N))
�

(227)

where wi � 0 are the weights associated with the individual measurements. These weights
can be chosen to re�ect reliability of each experimental data. A relatively large weight wi
can be selected for the experimental data set (x(i); yi) that is more reliable and vice-versa.

De�ning vectors

� =
h
�1 �2 :::: �m

iT
2 Rm (228)

Y =
h
y1 y2 :::: yN

i
2 RN (229)

e =
h
e1 e2 :::: eN

i
2 RN (230)

and matrices

W = diag
h
w1 w2 :::: wN

i

A =

264 f1(x
(1)) :::::::: fm(x

(1))

:::::: ::::::::: ::::::

f1(x
(N)) :::::::: fm(x

(N))

375
N x m

(231)

the optimization problem can be re-stated as follows it is desired to choose � such that the

quantity� = eTWe is minimized, i.e.

b�LS = min

�
eTWe (232)

subject to

e = Y �A� (233)

It is easy to see that the least square solution can be computed as follows

b�LS = �ATA
��1

ATY
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5.4.4 Nonlinear in Parameter Models: Gauss-Newton Method

In many problems the parameters appear nonlinearly in the model

byi = f �x(i) ; �1; :::; �m� ; (i = 1; 2; ::::N) (234)

or in the vector notation by = F [X;�] (235)

where

by =
h by1 by2 :::: byN iT (236)

F =
h
f
�
x(1);�

�
f
�
x(2);�

�
:::: f

�
x(N);�

� iT
(237)

and X =
�
x(1); � � � ;x(N)

	
represents data set. The problem is to determine vector b� such

that

	 = eTWe (238)

e = by � F (X;�) (239)

is minimized. Note that, in general, the above problem cannot be solved analytically and

we have to resort to iterative procedures. There are three solution approaches:

� Approximate solution using weighted least square when the model is analytically lin-
earizable: In many situations, it is possible to use some transformation of the original

model to a linear in parameter form. For example, the non-linear in parameter model

given by equation (213) was transformed to the following linear in parameter form

log(�rA) = log(ko) + n logCA �
E

R

�
1

T

�
After linearizing transformation, the theory developed in the previous section can be

used for parameter estimation.

� Gauss-Newton method or successive linear least square approach

� Use of direct optimization (nonlinear programming)

The �rst two approaches use the linear least square formulation as basis while the non-

linear programming approaches is a separate class of algorithms. In this sub-section, we only

present details of the Gauss-Newton method in detail.
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This approach is iterative. Start with an initial guess vector �(0): By some process,

generate improved guess �(k) from �(k�1): At kth iteration let �(k�1) be the guess solution.

By expanding the model as Taylor series in the neighborhood of � = �(k�1) and neglecting

higher order terms we have

ey(k) ' F �X;�(k�1)�+ �@F
@�

�
�=�(k�1)

�
4�(k)

�
(240)

where

J(k�1) =

�
@F

@�

�
(241)

is a (N �m) matrix with elements�
@F

@�

�
ij

=

"
@F
�
x(i);�

�
@�j

#
�=�(k�1)

(242)

i = 1; : : : N and j = 1; : : : m (243)

Let us denote

J(k�1) =

�
@F

@�

�
�=�(k�1)

(244)

and

F (k�1) = F
�
X;�(k�1)

�
(245)

Then approximate error vector at kth iteration can be de�ned as

ee(k) = y � ey(k) = �
y � F (k�1)

�
� J(k�1) 4�(k) (246)

and kth linear sub-problem is de�ned as

min
4� (j)

� ee(k)�TW ee(k) (247)

The least square solution to above sub problem can be obtained by solving the normal

equation �
J(k�1)

�T
W J(k�1)4�(k) =

�
J(k�1)

�T
W
�
y � F (k�1)

�
(248)

4�(k) =
h�
J(k�1)

�T
W J(k�1)

i�1 �
J(k�1)

�T
W
�
y � F (k�1)

�
(249)

and an improved guess can be obtained as

�(k) = �(k�1) +4�(k) (250)

Termination criterion : De�ning e(k) = y � F (k) and

�(k) =
�
e(k)
�T
W e(k) (251)

terminate iterations when �(k)changes only by a small amount, i.e.

j �(k) � �(k�1) j
j �(k) j < " (252)
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5.5 ODE-BVP / PDE Discretization using Minimum Residual
Methods

In interpolation based methods, we force residuals to zero at a �nite set of collocation points.

Based on the least squares approach discussed in this section, one can think of constructing

an approximation so that the residual becomes small (in some sense) on the entire domain.

Thus, given a ODE-BVP / PDE, we seek an approximate solution as linear combination

of �nite number of linearly independent functions. Parameters of this approximation are

determined in such a way that some norm of the residuals is minimized. There are many

discretization methods that belong to this broad class. In this section, we provide a brief

introduction to these discretization approaches.

5.5.1 Raleigh-Ritz method [11, 12]

To understand the motivation for developing this approach, �rst consider a linear system of

equations

Ax = b (253)

where A is a n�n positive de�nite and symmetric matrix and it is desired to solve for vector
x. We can pose this as a minimization problem by de�ning an objective function of the form

�(x) = (1=2)xTAx� xTb (254)

= (1=2) hx; Axi � hx;bi (255)

If �(x) minimum at x = x�; then the necessary condition for optimality requires

@�=@x = Ax� � b = 0 (256)

which is precisely the equation we want to solve. Since the Hessian matrix

@2�=@x2 = A

is positive de�nite, the solution of x = x� of Ax = b is the global minimum of objective

function �(x):

In the above demonstration, we were working in space Rn. Now, let us see if a similar

formulation can be worked out in another space, namely C(2)[0; 1]; i.e. the set of twice

di¤erentiable continuous functions on [0; 1]: Consider ODE-BVP

Lu = �d
2u

dz2
= f(z) (257)

B:C: 1 : u(0) = 0 (258)

B:C: 2 : u(1) = 0 (259)
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Similar to the linear operator (matrix)A;which operates on vector x 2Rn to produce another
vector b 2Rn; the linear operator L = [�d2=dz2 ]operates on vector u(z) 2 C(2)[0; 1] to

produce f(z) 2 C[0; 1]: Note that the matrix A in our motivating example is symmetric and

positive de�nite, i.e.

hx;Axi > 0 for all x 6=0
and AT = A

In order to see how the concept of symmetric matrix can be generalized to operators on

in�nite dimensional spaces, let us �rst de�ne adjoint of a matrix.

De�nition 30 (Adjoint of Matrix): A matrix A� is said to be adjoint of matrix A if it

satis�es hx;Ayi = hA�x;yi : Further, the matrix A is called self adjoint if A� = A:

When matrix A has all real elements, we have

xT (Ay) = (ATx)Ty

and it is easy to see that A� = AT ; i.e.

hx;Ayi =


ATx;y

�
(260)

The matrix A is called self-adjoint if AT = A: Does operator L de�ned by equations (257-

259) have some similar properties of symmetry and positiveness? Analogous to the concept

of adjoint of a matrix, we �rst introduce the concept of adjoint of an operator L on any inner

product space.

De�nition 31 (Adjoint of Operator) An operator L� is said to be adjoint of operator L
if it satis�es

hv;Lui = hL�v; ui

Further, the operator L is said to be self-adjoint, if L� = L, B:C:1� = B:C:1 and

B:C:2� = B:C:2:

To begin with, let us check whether the operator L de�ned by equations (257-259) is

self-adjoint.

hv;Lui =

1Z
0

v(z)(�d2u=dz2)dz

=

�
�v(z)du

dz

�1
0

+

1Z
0

dv

dz

du

dz
dz

=

�
�v(z)du

dz

�1
0

+

�
dv

dz
u(z)

�1
0

+

1Z
0

�
�d

2v

dz2

�
u(z)dz
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Using the boundary conditions u(0) = u(1) = 0, we have�
dv

dz
u(z)

�1
0

=
dv

dz
u(1)� dv

dz
u(0) = 0

If we set

B:C:1� : v(0) = 0

B:C:2� : v(1) = 0

then �
du

dz
v(z)

�1
0

= 0

and we have

hv;Lui =
1Z
0

�
�d

2v

dz2

�
u(z)dz = hL�v; ui

In fact, it is easy to see that the operator L is self adjoint as L� = L, BC1� = BC1 and

BC2� = BC2: In addition to the self-adjointness of L; we have

hu;Lui =

�
�u(z)du

dz

�1
0

+

1Z
0

�
du

dz

�2
dz

=

1Z
0

�
du

dz

�2
dz > 0 for all u(z)

when u(z) is a non-zero vector in C(2)[0; 1]: In other words, solving the ODE-BVP is anal-

ogous to solving Ax = b by optimization formulation where A is symmetric and positive

de�nite matrix, i.e.

A$
�
�d2=dz2

�
; x$ u(z); b$ f(z)

Let u(z) = u�(z) represent the true solution of the ODE-BVP. Now, taking motivation from

the optimization formulation for solving Ax = b, we can formulate a minimization problem

to compute the solution

� [u(z)] = (1=2)


u(z);�d2u=dz2

�
� hu(z); f(z)i (261)

= 1=2

1Z
0

u(z)(�d2u=dz2)dz �
1Z
0

u(z)f(z)dz (262)

67



u�(z) =
Min

u(z)
�[u(z)] (263)

=
Min

u(z)
(1=2) hu(z); Lu(z)i � hu(z); f(z)i (264)

u(z) 2 C(2)[0; 1] (265)

subject to u(0) = u(1) = 0

Thus, solving the ODE � BV P has been converted to solving a minimization problem.

Integrating the �rst term in equation (262) by parts, we have

1Z
0

u(z)

�
�d

2u

dz2

�
dz =

1Z
0

�
du

dz

�2
dz �

�
u
du

dz

�1
0

(266)

Now, using boundary conditions, we have�
u
du

dz

�1
0

=

�
u(0)

�
du

dz

�
z=0

� u(1)
�
du

dz

�
z=1

�
= 0 (267)

This reduces �(u) to

�(u) =

241=2 1Z
0

�
du

dz

�2
dz

35�
24 1Z
0

uf(z)dz

35 (268)

The above equation is similar to an energy function, where the �rst term is analogous to

kinetic energy and the second term is analogous to potential energy. As

1Z
0

�
du

dz

�2
dz

is positive and symmetric, we are guaranteed to �nd the minimum. The main di¢ culty

in performing the search is that, unlike the previous case where we were working in Rn;

the search space is in�nite dimensional as u(z) 2 C(2)[0; 1]. One remedy to alleviate this
di¢ culty is to reduce the in�nite dimensional search problem to a �nite dimensional search

space by constructing an approximate solution using n trial functions. Let v(1)(z); :::::; v(n)(z)

represent the trial functions. Then, the approximate solution is constructed as follows

bu(z) = �0v(0)(z) + :::::+ �nv(n)(z) (269)

68



where v(i)(z) represents trial functions. Using this approximation, we convert the in�nite

dimensional optimization problem to a �nite dimensional optimization problem as follows

Min
�

b�(�) =

241=2 1Z
0

�
dbu
dz

�2
dz

35�
24 1Z
0

buf(z)dz
35 (270)

= 1=2

1Z
0

�
�0
�
dv(0)(z)=dz

�
+ :::::+ �n

�
dv(n)(z)=dz

��2
dz

�
1Z
0

f(z)[�0v
(0)(z) + :::::+ �nv

(n)(z)]dz (271)

The trial functions v(i)(z) are chosen in advance and coe¢ cients �1; ::::�m are treated as

unknown. Also, let us assume that these functions are selected such that bu(0) = bu(1) = 0:
Then, using the necessary conditions for optimality, we get

@b�
@�i

= 0 for i = 0; 2; :::n (272)

These equations can be rearranged as follows

@b�
@�

= A�� � b = 0 (273)

where

� =
h
�0 �1 ::: �n

iT

A =

2666664
�
dv(0)

dz
;
dv(0)

dz

�
::::::::

�
dv(0)

dz
;
dv(n)

dz

�
:::::::::::::::::: :::::::: :::::::::::::�
dv(n)

dz
;
dv(0)

dz

�
::::::::

�
dv(n)

dz
;
dv(n)

dz

�
3777775 (274)

b =

264


v(1)(z); f(z)

�
::::::::::::

v(n)(z); f(z)

�
375 (275)

Thus, the optimization problem under consideration can be recast as follows

Min

�
b�(�) = Min

�

�
(1=2)�TA� � �Tb

�
(276)

It is easy to see that matrixA is positive de�nite and symmetric and the global minimum

of the above optimization problem can be found by using necessary condition for optimality
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i.e. @b�=@� = A�� � b = 0 or �� = A�1b: Note the similarity of the above equation with

the normal equation arising from the projection theorem. Thus, steps in the Raleigh-Ritz

method can be summarized as follows

1. Choose an approximate solution.

2. Compute matrix A and vector b

3. Solve for A� = b

5.5.2 Method of Least Squares [4]

This is probably best known minimum residual method. When used for solving linear op-

erator equations, this approach does not require self adjointness of the linear operator. To

understand the method, let us �rst consider a linear ODE-BVP

L [u(z)] = f(z) (277)

B:C:1 : u(0) = 0 (278)

B:C:2 : u(1) = 0 (279)

Consider an approximate solution constructed using linear combination of set of �nite number

of linearly independent functions as follows

bu(z) = �1bu1(z) + �2bu2(z) + ::::+ �nbun(z)
Let us assume that these basis functions are selected such that the two boundary conditions

are satis�ed, i.e. bui(0) = bui(1) = 0: Given this approximate solution, the residual is de�ned
as follows

R(z) = L [bu(z)]� f(z) where 0 < z < 1

The idea is to determine

� =
h
�1 �2 ::: �n

iT
such that

Min

�
�(�) = hR(z); R(z)i

hR(z); R(z)i =

Z 1

0

!(z)R(z)2dz
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where !(z) is a positive function on 0 < z < 1: This minimization problem leads to a

generalized normal form of equation26664
hLbu1;Lbu1i hLbu1;Lbu2i :::: hLbu1;Lbuni
hLbu2;Lbu1i hLbu2;Lbu2i :::: hLbu2;Lbuni
::::: ::::: ::::: :::::

hLbun;Lbu1i hLbun;Lbu2i ::::: hLbun;Lbuni

37775
26664
�1

�2

::::

�m

37775 =
26664
hLbu1;f(z)i
hLbu2;f(z)i
::::

hLbun;f(z)i

37775 (280)

which can be solved analytically.

Example 32 [4]Use the least squares method to �nd an approximate solution of the equation

L [u(z)] =
@2u

@z2
� u = 1 (281)

B:C: 1 : u(0) = 0 (282)

B:C: 2 : u(1) = 0 (283)

Let us select the function expansion as

bu(z) = �1 sin (�z) + �2 sin (2�z)
It may be noted that this choice ensures that the boundary conditions are satis�ed. Now,

L [bu1(z)] = �(�2 + 1) sin(�z)
L [bu2(z)] = �(4�2 + 1) sin(2�z)

With the inner product de�ned as

hf; gi =
Z 1

0

f(z)g(z)dz

the normal equation becomes"
(�2+1)2

2
0

0 (4�2+1)2

2

#"
�1

�2

#
=

"
�2(�2+1)

�

0

#
and the approximate solution is

bu(z) = � 4

�(�2 + 1)
sin (�z)

which agrees with the exact solution

u(z) =
ez + e1�z

(e+ 1)
� 1

to within 0.006.
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When boundary conditions are non-homogeneous, it is some times possible to transform

them to homogeneous conditions. Alternatively, the optimization problem is formulated in

such a way that the boundary conditions are satis�ed in the least square sense [4]. While this

method can be, in principle, extended to discretization of general ODE-BVP of type (32-

34a), working with parameter vector � as minimizing argument can pose practical di¢ culties

as the resulting minimization problem has to be solved numerically. Coming up with initial

guess of � to start the iterative algorithms can prove to be a tricky task. Alternatively, one

can work with trial solutions of the form (310) or (326) to make the problem computationally

tractable.

5.5.3 Gelarkin�s Method[4, 2]

The Gelarkin�s method can be applied for any problem where di¤erential operator is not self

adjoint or symmetric. Instead of minimizing �(bu), we solve for

v(i)(z);Lbu(z)� =



v(i)(z); f(z)

�
i = 1; 2; ::::; n

where bu(z) is chosen as �nite dimensional approximation to u(z)
u(z) = u1v

(1)(z) + ::::::+ unv
(n)(z) (284)

Rearranging above equations as

v(i)(z); (Lbu(z)� f(z))� = 0 for (i = 1; 2; ::::n)

we can observe that parameters u1; :::::un are computed such that the error or residual vector

e(z) = (Lbu(z)� f(z))
is orthogonal to the (n) dimensional subspace spanned by set S de�ned as

S =
�
v(i)(z) : i = 1; 2; ::::n

	
This results in a linear algebraic equation of the form

Abu = b (285)

where

A =

264


v(1); L(v(1))

�
::::::::



v(1); L(v(n))

�
::::::::::::: :::::::: :::::::::::

v(n); L(v(1))

�
::::::::



v(n); L(v(n))

�
375 (286)
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b =

264


v(1)(z); f(z)

�
:::::::::::::

v(n)(z); f(z)

�
375

Solving for bu gives approximate solution given by equation (284).When the operator is L
self adjoint, the Gelarkin�s method reduces to the Raleigh-Ritz method.

Example 33 Consider ODE-BVP

Lu = @2u=@z2 � @u=@z = f(z) (287)

in (0 < z < 1) (288)

subject to u(0) = 0; u(1) = 0 (289)

It can be shown that

L�(= @2=@z2 + @=@z) 6= (@2=@z2 � @=@z) = L

Thus, Raleigh-Ritz method cannot be applied to generate approximate solution to this problem,

however, Gelarkin�s method can be applied.

It may be noted that one need not restrict to linear transformations while applying the

Gelarkin�s method. This approach can be used even when the ODE-BVP or PDE at hand

is a nonlinear transformation. Given a general nonlinear transformation of the form

T (u) = f(z)

we select a set of trial function
�
v(i)(z) : i = 0; 1; :::n

	
and an approximate solution of the

form (284) and solve for

v(i)(z); T (u(z))

�
=


v(i)(z); f(z)

�
for i = 0; 1; 2; ::::n

Example 34 [4]Use the Gelarkin�s method to �nd an approximate solution of the equation

L [u(z)] =
@2u

@z2
� u = 1 (290)

B:C: 1 : u(0) = 0 (291)

B:C: 2 : u(1) = 0 (292)

Let us select the function expansion as follows

bu(z) = �1 sin (�z) + �2 sin (2�z)
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which implies

L [bu(z)] = ��1(�2 + 1) sin(�z)� �2(4�2 + 1) sin(2�z)
With the inner product de�ned as

hf; gi =
Z 1

0

f(z)g(z)dz

the normal equation becomes"
�(�2+1)

2
0

0 �(4�2+1)
2

#"
�1

�2

#
=

"
2
�

0

#

and the approximate solution is

bu(z) = � 4

�(�2 + 1)
sin (�z)

which turns out to be identical to the least square solution.

Example 35 [2]Consider the ODE-BVP describing steady state conditions in a tubular re-
actor with axial mixing (TRAM) in which an irreversible 2nd order reaction is carried out.

T (C) = 1

Pe

d2C

dz2
� dC
dz
�DaC2 = 0 (0 � z � 1)

dC

dz
= Pe(C � 1) at z = 0;

dC

dz
= 0 at z = 1;

The approximate solution is chosen as

bC(z) = bC1v(1)(z) + ::::::+ bCn+1v(n+1)(z) = n+1X
i=1

bCiv(i)(z) (293)

and we then evaluate the following set of equations*
v(i)(z);

1

Pe

d2 bC(z)
dz2

� d
bC(z)
dz

�Da bC(z)2+ = 
v(i)(z); f(z)� for i = 2; ::::n

where the inner product is de�ned as

hg(z); h(z)i =
Z 1

0

g(q)h(q)dq
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It may be noted that evaluation of integrals, such asD
v(i)(z); bC(z)2E = Z 1

0

v(i)(q)
�Pn

i=0
bCiv(i)(q)�2 dq

will give rise to equations that are nonlinear in terms of unknown coe¢ cients. Two additional

equations arise from enforcing the boundary conditions. i.e.

d bC(0)
dz

= Pe( bC(0)� 1)
d bC(1)
dz

= 0

Thus, we get (n+1) nonlinear algebraic equations in (n+1) unknowns, which have to be solved

simultaneously to compute the unknown coe¢ cients bC1; ::: bCn+1. Details of computing these
integrals and developing piecewise approximating functions on �nite element can be found in

[2].

5.5.4 Discretization of ODE-BVP / PDEs using Finite Element Method

The �nite element method is a powerful tool for solving PDEs particularly when the system

under consideration has complex geometry. This method is based on the least square approx-

imation. In this section, we provide a very brief introduction to the method discretization

of PDEs and ODE-BVPs using the �nite element method.

Discretization of ODE-BVP using Finite Element [11] Similar to �nite di¤erence

method, we begin by choosing (n� 1) equidistant internal node (grid) points as follows

zi = i�z (i = 0; 1; 2; ::::n)

and de�ning n �nite elements

zi�1 � z � zi for i = 1; 2; :::n

Then we formulate the approximate solution using piecewise constant polynomials on each

�nite element. The simplest possible choice is a line

bui(z) = ai + biz (294)

zi�1 � z � zi for i = 1; 2; :::n (295)

With this choice, the approximate solution for the ODE-BVP can be expressed as

bu(z) =
8>>><>>>:

a1 + b1z for z0 � z � z1
a2 + b2z for z1 � z � z2

:::::

an + bnz for zn�1 � z � zn

9>>>=>>>; (296)
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In principle, we can work with this piecewise polynomial approximation. However, the

resulting optimization problems has coe¢ cients (ai; bi : i = 1; 2; :::n) as unknowns. If the

optimization problem has to be solved numerically, it is hard to generate initial guess for

these unknown coe¢ cients. Thus, it is necessary to parameterize the polynomial in terms of

unknowns for which it is relatively easy to generate the initial guess. This can be achieved

as follows. Let bui denote the value of the approximate solution bu(z) at z = zi; i.e.bui = bu(zi) (297)

Then, at the boundary points of the i�th element, we have

bu(zi�1) = bui�1 = ai + bizi�1 (298)bu(zi) = bui = ai + bizi (299)

Using these equations, we can express (ai; bi) in terms of unknowns (bui�1; bui) as follows
ai =

bui�1zi � buizi�1
�z

; bi =
bui � bui�1
�z

(300)

Thus, the polynomial on the i�th segment can be written as

bui(z) =
bui�1zi � buizi�1

�z
+

�bui � bui�1
�z

�
z (301)

zi�1 � z � zi for i = 1; 2; :::n

and the approximate solution can be expressed as follows

bu(z) =
8>>>>>>>><>>>>>>>>:

bu0z1
�z

+

�bu1 � bu0
�z

�
z for z0 � z � z1bu1z2 � bu2z1

�z
+

�bu2 � bu1
�z

�
z for z1 � z � z2

::::::::::::::bun�1zn � bunzn�1
�z

+

�bun � bun�1
�z

�
z for zn�1 � z � zn

9>>>>>>>>=>>>>>>>>;
(302)

Thus, now we can work in terms of unknown values fbu0;bu1; ::::bung instead of parameters ai
and bi:. Since unknowns fbu0;bu1; ::::bung correspond to some physical variable, it is relatively
easy to generate good guesses for these unknowns from knowledge of the underlying physics

of the problem. The resulting form is still not convenient from the viewpoint of evaluating

integrals involved in the computation of � [bu(z)] : A more elegant and useful form of equation
(302) can be found by de�ning shape functions. To arrive at this representation, consider

the rearrangement of the line segment equation on i�th element as follows

bui(z) =
bui�1zi � buizi�1

�z
+

�bui � bui�1
�z

�
z (303)

=
zi � z
�z

bui�1 + z � zi�1
�z

bui
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Let us de�ne two functions, Mi(z) and Ni(z); which are called as shape functions, as follows

Mi(z) =
zi � z
�z

; Ni(z) =
z � zi�1
�z

zi�1 � z � zi for i = 1; 2; :::n

The graphs of these shape functions are straight lines and they have fundamental properties

Mi(z) =

(
1 ; z = zi�1

0 ; z = zi

)
(304)

Ni(z) =

(
0 ; z = zi�1

1 ; z = zi

)
(305)

This allows us to express bui(z) as
bui(z) = bui�1Mi(z) + buiNi(z)

i = 1; 2; :::n

Note that the coe¢ cient bui appears in polynomials bui(z) and bui+1(z); i.e.
bui(z) = bui�1Mi(z) + buiNi(z)bui+1(z) = buiMi+1(z) + bui+1Ni+1(z)

Thus, we can de�ne a continuous trial function by combining Ni(z) and Mi+1(z) as follows

v(i)(z) =

8>>><>>>:
Ni(z) =

z � zi�1
�z

= 1 +
z � zi
�z

; zi�1 � z � zi

Mi+1(z) =
zi+1 � z
�z

= 1� z � zi
�z

; zi � z � zi+1
0 Elsewhere

9>>>=>>>; (306)

i = 1; 2; ::::n

This yields the simplest and most widely used hat function, which is shown in Figure 10.

This is a continuous linear function of z; but, it is not di¤erentiable at zi�1;zi;and zi+1: Also,

note that at z = zi; we have

v(i)(zj) =

(
1 if i = j

0 otherwise

)
(307)

j = 1; 2; ::::; n

Thus, plot of this function looks like a symmetric triangle. The two functions at the boundary

points are de�ned as ramps

v(0)(z) =

(
M1(z) = 1�

z

�z
; 0 � z � z1

0 Elsewhere

)
(308)
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v(n)(z) =

8<: Nn(z) = 1 +
z � zn
�z

; zn�1 � z � zn
0 Elsewhere

9=; (309)

Introduction of these trial functions allows us to express the approximate solution as

bu(z) = bu0v(0)(z) + ::::::+ bunv(n)(z) (310)

0 � z � 1

and now we can work with bu = h bu0 bu1 ::: bun iT as unknowns. Now, we have two

boundary conditions, i.e. bu0 = 0 and bun = 0
and the set of unknowns is reduced to bu = h bu1 bu2 ::: bun�1 iT . The optimum parametersbu can be computed by solving equation

Abu� b = 0 (311)

where

(A)ij =

�
dv(i)

dz
;
dv(j)

dz

�
(312)

and
dv(i)

dz
=

(
1=�z on interval left of zi
�1=�z on interval right of zi

)
If intervals do not overlap, then �

dv(i)

dz
;
dv(j)

dz

�
= 0 (313)

The intervals overlap when

i = j :

�
dv(i)

dz
;
dv(i)

dz

�
=

ziZ
zi�1

(1=�z)2dz +

zi+1Z
zi

(�1=�z)2dz = 2=�z (314)

or

i = j + 1 :

�
dv(i)

dz
;
dv(i�1)

dz

�
=

ziZ
zi�1

(1=�z):(�1=�z)dz = �1=�z (315)

i = j � 1 :
�
dv(i)

dz
;
dv(i+1)

dz

�
=

zi+1Z
zi

(1=�z):(�1=�z)dz = �1=�z (316)
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Figure 10: (a) Trial functions and (b) Piece-wise linear approximation

Thus, the matrix A is a tridiagonal matrix

A =
1

�z

26664
2 �1 :::: :::: 0

�1 2 �1 :::: :::

:::: :::: :::: :::: :::

0 :::: :::: �1 2

37775 (317)

which is similar to the matrix obtained using �nite di¤erence method. The components of

vector b on the R.H.S. is computed as

bi =


v(i); f(z)

�
(318)

=

ziZ
zi�1

f(z)

�
1 +

z � zi
�z

�
dz +

zi+1Z
zi

f(z)

�
1� z � zi

�z

�
dz (319)

i = 1; 2; :::; n� 1 (320)

which is a weighted average of f(z) over the interval zi�1 � z � zi+1:Note that the R.H.S.
is signi�cantly di¤erent from �nite di¤erence method.

In this sub-section, we have developed approximate solution using piecewise linear ap-

proximation. It is possible to develop piecewise quadratic or piecewise cubic approximations

and generate better approximations. Readers are referred to Computational Science and

Engineering by Gilbert Strang [13].

Discretization of PDE using Finite Element Method [12] The Raleigh-Ritz method

can be easily applied to discretize PDEs when the operators are self-adjoint. Consider
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Laplace / Poisson�s equation

Lu = �@2u=@x2 � @2u=@y2 = f(x; y) (321)

in open set S and u(x; y) = 0 on the boundary. Let the inner product on the space

C(2)[0; 1]� C(2)[0; 1] be de�ned as

hf(x; y); g(x; y)i =
1Z
0

1Z
0

f(x; y) g(x; y) dxdy (322)

We formulate an optimization problem

�(u) = 1=2


u(x; y);�@2u=@x2 � @2u=@y2

�
� hu(x; y); f(x; y)i (323)

Integrating by parts, we can show that

�(u) =

Z Z
[1=2(@u=@x)2 + 1=2(@u=@y)2 � fu]dxdy (324)

= (1=2) h@u=@x; @u=@xi+ 1=2 h@u=@y; @u=@yi � hf(x; y); u(x; y)i (325)

We begin by choosing (n� 1) � (n� 1) equidistant (with �x = �y = h) internal node

(grid) points at (xi; yj) where

xi = ih (i = 1; 2; ::::n� 1)
yj = jh (j = 1; 2; ::::n� 1)

In two dimension, the simplest element divides region into triangles on which simple poly-

nomials are �tted. For example, u(x; y) can be approximated as

bu(x; y) = a+ bx+ cy
where vertices a; b; c can be expressed in terms of values of bu(x; y) at the triangle vertices.
For example, consider triangle de�ned by (xi; yj); (xi+1; yj) and (xi; yj+1): The value of the

approximate solution at the corner points is denoted by

bui;j = bu(xi; yj) ; bui+1;j = bu(xi+1; yj) ; bui;j+1 = bu(xi; yj+1)
Then, bu(x; y) can be written in terms of shape functions as follows

bu(x; y) = bui;j + bui+1;j � bui;j
h

(x� xi;j) +
bui;j+1 � bui;j

h
(y � yi;j)

= bui;j �1� (x� xi;j)
h

� (y � yi;j)
h

�
+bui+1;j �(x� xi;j)

h

�
+ bui;j+1 �(y � yi;j)

h

�
(326)
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Figure 11: Trial function in two dimensions.

Now, coe¢ cient bui;j appears in the shape functions of four triangular element around (xi; yj).
Collecting these shape functions, we can de�ne a two dimensional trial function as follows

v(i;j)(z) =

8>>>>>>>>>><>>>>>>>>>>:

1� (x� xi;j)
h

� (y � yi;j)
h

; xi � x � xi+1 ; yj � y � yj+1

1 +
(x� xi;j)

h
� (y � yi;j)

h
; xi�1 � x � xi ; yj � y � yj+1

1� (x� xi;j)
h

+
(y � yi;j)

h
; xi � x � xi+1 ; yj�1 � y � yj

1 +
(x� xi;j)

h
+
(y � yi;j)

h
; xi�1 � x � xi ; yj�1 � y � yj

0 Elsewhere

9>>>>>>>>>>=>>>>>>>>>>;
The shape of this trial function is like a pyramid (see Figure 11). We can de�ne trial functions

at the boundary points in a similar manner. Thus, expressing the approximate solution using

trial functions and using the fact that bu(x; y) = 0 at the boundary points, we get
bu(x; y) = bu1;1v(1;1)(x; y) + ::::+ bun�1;n�1v(n�1;n�1)(x; y)

where v(i;j)(z) represents the (i,j)�th trial function. For the sake of convenience, let us re-

number these trial functions and coe¢ cients using a new index l = 0; 1; :::::; N such that

l = i+ (n� 1)j
i = 1; :::n� 1 and j = 0; 1; :::n� 1
N = (n� 1)� (n� 1)

The approximate solution can now be expressed as

bu(x; y) = bu0v0(x; y) + ::::+ buNvN(x; y)
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The minimization problem an be reformulated as

Minbu �(bu) = Minbu
�
1

2

�
@bu
@x
;
@bu
@x

�
+
1

2

�
@bu
@y
;
@bu
@y

�
� hf(x; y); bu(x; y)i�

where bu = h bu0 bu2 ::: buN iT
Thus, the above objective function can be reformulated as

Minbu �(bu) = Minbu �
1=2buTAbu� buTb� (327)

where

(A)ij = (1=2)


@v(i)=@x; @v(j)=@x

�
+ (1=2)



@v(i)=@y; @v(j)=@y

�
(328)

bi =


f(x; y); v(j)(x; y)

�
(329)

Again, the matrix A is symmetric and positive de�nite matrix and this guarantees that

stationary point of �(u) is the minimum. At the minimum, we have

@�=@bu = Abu� b = 0 (330)

The matrix A will also be a sparse matrix. The main limitation of Raleigh-Ritz method is

that it works only when the operator L is symmetric or self adjoint.

6 Errors in Discretization and Computations[4]

As evident from various examples discussed in this module, the process of discretization

converts the original (often intractable) problem typically from an in�nite dimensional spaces

to a computationally tractable form in �nite dimensions. Obviously, solving the discretized

version of the problem, ey=bT (ex); even exactly is not equivalent to solving the original problem
y =T (x). In fact, the discretized problem, though it is computationally tractable, is often
not solved exactly and errors get introduced due to the limitations of the computational

procedure. These two sources of errors together cause error in the �nal computed solution.

Computational errors arise when the discretized problem ey=bT (ex) cannot be solved ex-
actly. For example, discretization of nonlinear ODE-BVP, such as the steady state behavior

of TRAM, gives rise to coupled nonlinear algebraic equations, which cannot be solved ex-

actly. When we employ the Newton�s method to solve the resulting set of equations, we end

up constructing an approximate solution to the set of nonlinear algebraic equations. This
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happens as the iterations are terminated after a �nite number based on some termination

criterion. In addition, the fact that the arithmetic operations in a computer can be carried

out only with a �nite number of precision introduces round-o¤ errors. It may be noted

that these round-o¤ errors occur in every iteration and their cumulative e¤ect on the �nal

solution is di¢ cult to predict.

Discretization errors arise because an in�nite dimensional transformation by a �nite

dimensional one. Thus, while studying the discretization errors, we have to understand

behavior of ex with reference to the true solution x:It is reasonable to expect that a nu-
merical method be capable of yielding arbitrarily accurate answers by making discretization

su¢ ciently �ne. A method that gives a sequence of approximations converging to the true

solution is called convergent approximation method.

7 Summary and Conclusions

In this module, we have discussed various polynomial approximation based approaches to

discretization of transformations in in�nite dimensional spaces to computationally tractable

forms in �nite dimensional spaces. If we examine the transformed problems, then we can

arrive at the following three classes of discretized problems

� Linear and nonlinear algebraic equations: Either we have to solve

Ax = b

for x 2Rn given b 2 Rn and A is a n� n matrix or solve

F (x) = 0

for x 2Rn where F (x) is a n� 1 function vector.

� Ordinary Di¤erential Equations - Initial Value Problem (ODE-IVP): We have to inte-

grate a system of coupled ordinary di¤erential equations of the form

dx

d�
= F (x;�)

given initial condition x(0) and � 2 [a; b]:

� Optimization problem: Minimize some scalar objective function �(x) :Rn ! R with

respect to argument x:

The numerical solution techniques for solving these fundamental problems forms the basic

toolkit of the numerical analysis. In the modules that follow, we examine each tool separately

and in greater details.
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8 Appendix: Necessary and Su¢ cient Conditions for

Unconstrained Optimality

8.1 Preliminaries

Given a real valued scalar function �(x) : Rn ! R de�ned for any x 2 Rn:

De�nition 36 (Global Minimum): If there exists a point x� 2 Rn such that �(x�) < �(x)
for any x 2 RN; then x� is called as global minimum of �(x):

De�nition 37 "-neighborhood of a point x be de�ned as the set N(x; ") = fx : kx� xk � "g

De�nition 38 (Local Minimum) : If there exists an "�neighborhood NC(x) round x such
that �(x) < �(x) for each x 2 Ne(x); then x is called local minimum.

Before we prove the necessary and su¢ cient conditions for optimality, we revise some

relevant de�nitions from linear algebra.

De�nition 39 (Positive De�nite Matrix) A n � n matrix A is called positive de�nite

if for every x 2Rn

xTAx >0 (331)

whenever x 6=0:

De�nition 40 (Positive Semi-de�nite Matrix) A n � n matrix A is called positive

semi-de�nite if for every x 2Rn we have

xTAx �0 (332)

De�nition 41 :(Negative De�nite Matrix) A n�n matrix A is called negative de�nite

if for every x 2Rn

xTAx <0 (333)

whenever x 6=0:

De�nition 42 (Negative Semi-de�nite Matrix) A n � n matrix A is called negative

semi-de�nite if for every x 2Rn we have

xTAx �0 (334)
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8.2 Necessary Condition for Optimality

The necessary condition for optimality, which can be used to establish whether a given point

is a stationary (maximum or minimum) point, is given by the following theorem.

Theorem 43 If �(x) is continuous and di¤erentiable and has an extreme (or stationary)
point (i.e. maximum or minimum ) point at x =x; then

r�(x) =
�
@�

@x1

@�

@x2
::::::::::::::

@�

@xN

�T
x=x

= 0 (335)

Proof: Suppose x =x is a minimum point and one of the partial derivatives, say the kth

one, does not vanish at x =x; then by Taylor�s theorem

�(x+�x) = �(x) +
NX
i=1

@�

@xi
(x)�xi +R2(x;�x) (336)

i:e: �(x+�x)� �(x) = �xk
@�

@xi
(x) +R2(x;�x) (337)

Since R2(x;�x) is of order (�xi)2 ; the terms of order �xi will dominate over the higher

order terms for su¢ ciently small �x: Thus, sign of �(x+�x)� �(x) is decided by sign of

�xk
@�

@xk
(x)

Suppose,
@�

@xk
(x) > 0 (338)

then, choosing �xk < 0 implies

�(x+�x)� �(x) < 0) �(x+�x) < �(x) (339)

and �(x) can be further reduced by reducing �xk:This contradicts the assumption that

x =x is a minimum point. Similarly, if

@�

@xk
(x) < 0 (340)

then, choosing �xk > 0 implies

�(x+�x)� �(x) < 0) �(x+�x) < �(x) (341)

and �(x) can be further reduced by increasing �xk:This contradicts the assumption that

x =x is a minimum point. Thus, x =x will be a minimum of �(x) only if

@�

@xk
(x) = 0 For k = 1; 2; :::n (342)

Similar arguments can be made if x =x is a maximum of �(x):

85



8.3 Su¢ cient Condition for Optimality

The su¢ cient condition for optimality, which can be used to establish whether a stationary

point is a maximum or a minimum, is given by the following theorem.

Theorem 44 A su¢ cient condition for a stationary point x =x to be an extreme point (i.e.

maximum or minimum) is that matrix
�
@2�

@xi@xj

�
(Hessian of �)evaluated at x =x is

1. positive de�nite when x =x is minimum

2. negative de�nite when x =x is maximum

Proof: Using Taylor series expansion, we have

�(x+�x) = �(x) +

NX
i=1

@�

@xi
(x)�x+

1

2!

NX
i=1

NX
j=1

@2�(x+ ��x)

@xi@xj
�xi�xj

(0 < � < 1) (343)

:Since x =x is a stationary point we have

r�(x) = 0 (344)

Thus, above equation reduces to

�(x+�x)� �(x) =
1

2!

NX
i=1

NX
j=1

@2�(x+ ��x)

@xi@xj
�xi�xj (345)

(0 < � < 1)

This implies that sign of �(a+�x)��(a)at extreme point x is same as sign of R.H.S. Since

the 2�nd partial derivative
�
@2�

@xi@xj

�
is continuous in the neighborhood of x =x; its value at

x =x + ��x will have same sign as its value at x =x for all su¢ ciently small �x. If the

quantity

NX
i=1

NX
j=1

@2�(x+ ��x)

@xi@xj
�xi�xj ' (�x)T [r2�(x)]�x �0 (346)

for all�x, then x =x will be a local minimum. In other words, if Hessian matrix ,[r2�(x)], is

positive semi-de�nite, then x =x will be a local minimum. If the quantity

NX
i=1

NX
j=1

@2�(x+ ��x)

@xi@xj
�xi�xj ' (�x)T [r2�(x)]�x �0 (347)
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for all �x, then x =x will be a local maximum. In other words, if Hessian matrix, [r2�(x)],

is negative semi-de�nite, then x =x will be a local maximum.

It may be noted that the need to de�ne a positive de�nite or negative de�nite matri-

ces naturally arises from the geometric considerations while qualifying a stationary point

in multi-dimensional optimization problem. Whether a matrix is positive (semi) de�nite,

negative (semi) de�nite or inde�nite can be established using algebraic conditions, such as

sign of the eigen values of the matrix. If eigenvalues of a matrix are all real positive (i.e.

�i � 0 for all i) then, the matrix is positive semi-de�nite. If eigenvalues of a matrix are all
real negative (i.e. �i � 0 for all i) then, the matrix is negative semi-de�nite. When eigen

values have mixed signs, the matrix is inde�nite.
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